The antitumor effects of an experimental chemoendocrine therapy combining a new pure antiestrogen ICI 182780 and 5-fluorouracil (5-FU) were studied on MCF-7 human breast cancer cells implanted in nude mice. ICI 182780 had a dose-dependent antitumor activity, which was potentiated by the concomitant use of 5-FU. When compared with the control group, the estrogen receptor (ER) level in the ICI 182780 group was lower and that in the combination group was markedly lower. Cell cycle analysis by flow cytometry (FCM) resulted in a lower percentage of S-phase cells (%S) in the treated mice. No significant difference was observed in the 5-FU concentrations in tumor cells, while the 5-FU content in RNA was significantly higher in the combination group. The changes in free thymidylate synthetase (TS) concentration indicated TS synthesis after the administration of 5-FU to be more greatly suppressed in the combination group than in the 5-FU group. These results suggest that ICI 182780 and 5-FU exert their combination effect mainly on ER-positive cells, and that the suppression of TS synthesis in tumor cells and the potentiation of the 5-FU-induced metabolic dysfunction of RNA are thus involved in the mode of action of this combination therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02482240DOI Listing

Publication Analysis

Top Keywords

ici 182780
16
combination group
12
effects experimental
8
experimental chemoendocrine
8
chemoendocrine therapy
8
pure antiestrogen
8
human breast
8
breast cancer
8
cancer cells
8
cells implanted
8

Similar Publications

Classical tissue recombination experiments demonstrate that cell-fate determination along the anterior-posterior axis of the Müllerian duct occurs prior to postnatal day 7 in mice. However, little is known about how these cell types are maintained in adults. In this study, we provide genetic evidence that a balance between antagonistic retinoic acid (RA) and estrogen signaling activity is required to maintain simple columnar cell fate in adult uterine epithelium.

View Article and Find Full Text PDF

Inavolisib: First Approval.

Drugs

January 2025

Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.

Inavolisib (Itovebi) is an orally administered, phosphatidylinositol-3-kinase alpha (PI3Kα) inhibitor being developed by Genentech, a member of the Roche group, for the treatment of solid tumours. On 10 October 2024, inavolisib received its first approval in the USA in combination with palbociclib and fulvestrant for the treatment of adults with endocrine-resistant, PIK3CA-mutated, hormone receptor (HR)-positive, human epidermal growth factor 2 (HER2)-negative, locally advanced or metastatic breast cancer, as detected by an FDA-approved test, following recurrence on or after completing adjuvant endocrine therapy. In the EU and other countries worldwide, regulatory review of inavolisib is currently underway.

View Article and Find Full Text PDF

: Early-onset breast cancer (EOBC), particularly in patients under 40, presents with distinct biological characteristics and worse survival outcomes compared to late-onset cases. Despite intensive treatments, EOBC patients, especially those with hormone receptor-positive, HER2-negative (HR+/HER2-) subtypes, show poorer prognosis. CDK4/6 inhibitors, combined with endocrine therapy (ET) have become the standard for HR+/HER2- metastatic breast cancer, yet younger patients are underrepresented in clinical trials.

View Article and Find Full Text PDF

For individuals at high risk of developing breast cancer, interventions to mitigate this risk include surgical removal of their breasts and ovaries or five years treatment with the anti-estrogen tamoxifen or aromatase inhibitors. We hypothesized that a silicone based anti-estrogen-eluting implant placed within the breast would provide the risk reduction benefit of hormonal therapy, but without the adverse effects that limit compliance. To this end, we demonstrate that when placed adjacent to mammary tissue in the 7,12-dimethylbenz[a]anthracene-induced rat breast cancer model a fulvestrant-eluting implant delays breast cancer with minimal systemic exposure.

View Article and Find Full Text PDF

Targeting the estrogen receptor (ER or ERα) through competitive antagonists, receptor downregulators, or estrogen synthesis inhibition remains the primary therapeutic strategy for luminal breast cancer. We have identified a novel mechanism of ER inhibition by targeting the critical interface between its DNA-binding domain (DBD) and ligand-binding domain (LBD). We demonstrate that mitoxantrone (MTO), a topoisomerase II inhibitor, binds at this previously unexplored DBD-LBD interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!