We have previously observed in Chinese hamster cells that ethyl methane sulfonate (EMS) induces mutations which are distributed over at least 10-14 cell divisions following treatment. This delayed appearance of mutations could be explained by EMS-induced lesions which remain in DNA and have a probability that is significantly less than 1.0 of producing base mispairing errors during successive replication cycles (replication-dependent). Alternatively, delayed mutation may be a time-dependent process in which a slow acting or damage inducible error-prone repair process removes persistent DNA lesions and replaces them with an incorrect base during the course of 7-10 days of colony growth following EMS exposure. To address this question, the distribution of HGPRT delayed mutation events (fifth division or later) in cells plated immediately for exponential growth after EMS treatment was compared with the distribution in cells which remained under confluent growth conditions for 8 days and then were replated. Both the distribution and rate of accumulation of delayed mutations (mutations/cell division) were similar in the two culture conditions. In contrast, the frequency of early mutations (before the fifth division) in the confluent population was reduced more than 2-fold compared to dividing cells. A comparison of the frequency of EMS-induced DNA lesions in the two populations revealed that the density inhibited population contained one third the DNA lesions of the exponential population. These results argue against a time-dependent process since, if this mechanism applies, one would expect an increase in early mutant events and a decrease in delayed events in the confluent population. The results, however, are consistent with a replication model in which potential early mutant lesions are preferentially removed in the density inhibited culture during the 8 days of incubation while lesions producing late mutants are not removed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0027-5107(98)00225-5DOI Listing

Publication Analysis

Top Keywords

delayed mutation
12
dna lesions
12
chinese hamster
8
hamster cells
8
time-dependent process
8
growth ems
8
confluent population
8
density inhibited
8
early mutant
8
delayed
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!