Development of a competitive ELISA for detection of primates infected with monkey B virus (Herpesvirus simiae).

J Virol Methods

Department of Biochemistry and Microbiology, College of Osteopathic Medicine, Oklahoma State University, Tulsa 74107-1898, USA.

Published: January 1999

Two competitive ELISAs (C-ELISAs) are described that allow detection of antibodies against monkey B virus (BV, Cercopithecine herpesvirus 1). The assays utilize monoclonal antibodies (MABs) directed against the BV glycoprotein B (gB). Two of these MABs specifically recognize BV gB while a third MAB also reacts with the gB homologues of other primate alpha-herpesviruses (herpes simplexvirus-1, HSV-1: HSV-2; simian agent-8, SA8; and Herpesvirus papio-2, HVP2). A C-ELISA using the single cross-reactive MAB 3E8 allowed detection of host antibodies against HSV-1, HSV-2, SA8, HVP2 or BV, thus proving to be a sensitive assay for the detection of infection by any of these primate alpha-herpesviruses. The C-ELISA using BV-specific MABs was less sensitive but did allow some discrimination between infection by BV versus other alpha-herpesviruses. It was also shown that a C-ELISA using HVP2 as antigen and the cross-reactive MAB 3E8 was as sensitive for detection of BV antibody in macaque sera as an assay employing BV antigen. This test format allows detection of BV-infected primates without the biohazards associated with preparation and use of BV antigen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0166-0934(98)00134-7DOI Listing

Publication Analysis

Top Keywords

monkey virus
8
primate alpha-herpesviruses
8
hsv-1 hsv-2
8
cross-reactive mab
8
mab 3e8
8
alpha-herpesviruses c-elisa
8
detection
6
development competitive
4
competitive elisa
4
elisa detection
4

Similar Publications

Background: The novel coronavirus disease (COVID-19) sparked significant health concerns worldwide, prompting policy makers and health care experts to implement nonpharmaceutical public health interventions, such as stay-at-home orders and mask mandates, to slow the spread of the virus. While these interventions proved essential in controlling transmission, they also caused substantial economic and societal costs and should therefore be used strategically, particularly when disease activity is on the rise. In this context, geosocial media posts (posts with an explicit georeference) have been shown to provide a promising tool for anticipating moments of potential health care crises.

View Article and Find Full Text PDF

HIV-1 envelope broadly neutralizing antibodies represent a promising component of HIV-1 cure strategies. To evaluate the therapeutic efficacy of combination monoclonal antibodies (mAbs) in a rigorous nonhuman primate model, we tested different combinations of simian immunodeficiency virus (SIV) neutralizing mAbs in SIVmac251-infected rhesus macaques. Antiretroviral therapy-suppressed animals received anti-SIV mAbs targeting multiple Env epitopes spanning analytical treatment interruption (ATI) in 3 groups (n = 7 each): i) no mAb; ii) 4-mAb combination; and iii) 2-mAb combination.

View Article and Find Full Text PDF

Case: We present a 42-year-old man who developed extensive left lower extremity arterial thrombosis following COVID-19 pneumonia. Despite multiple revascularization attempts and a below-knee amputation, he faced wound necrosis and insufficient soft tissue coverage. An innovative approach using a pedicled flap and sequential flow-through free flaps was used for limb salvage.

View Article and Find Full Text PDF

Influenza virus pandemics and seasonal epidemics have claimed countless lives. Recurrent zoonotic spillovers of influenza viruses with pandemic potential underscore the need for effective countermeasures. In this study, we show that pre-exposure prophylaxis with broadly neutralizing antibody (bnAb) MEDI8852 is highly effective in protecting cynomolgus macaques from severe disease caused by aerosolized highly pathogenic avian influenza H5N1 virus infection.

View Article and Find Full Text PDF

Homeobox protein MSX-1 restricts hepatitis B virus by promoting ubiquitin-independent proteasomal degradation of HBx protein.

PLoS Pathog

January 2025

Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.

Hepatitis B virus (HBV) X protein (HBx) is a key factor for regulating viral transcription and replication. We recently characterized homeobox protein MSX-1 (MSX1) as a host restriction factor that inhibits HBV gene expression and genome replication by directly binding to HBV enhancer II/core promoter (EnII/Cp) and suppressing its promoter and enhancer activities. Notably, HBx expression was observed to be repressed more drastically by MSX1 compared to other viral antigens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!