Cloning of two genes encoding potassium transporters in Neurospora crassa and expression of the corresponding cDNAs in Saccharomyces cerevisiae.

Mol Microbiol

Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain.

Published: January 1999

Two Neurospora crassa genes, trk-1 and hak-1, encode K+ transporters that show sequence similarities to the TRK transporters described in Saccharomyces cerevisiae and Schizosaccharomyces pombe, and to the HAK transporters described in Schwanniomyces occidentalis and barley. The N. crassa TRK1 and HAK1 transporters expressed by the corresponding cDNAs in a trk1 delta trk2 delta mutant of S. cerevisiae exhibited a high affinity for Rb+ and K+. Northern blot analysis and comparison of the kinetic characteristics of the two transporters in the trk1 delta trk2 delta mutant with the kinetic characteristics of K+ uptake in N. crassa cells allowed TRK1 to be identified as the dominant K+ transporter and HAK1 as a transporter that is only expressed when the cells are K+ starved. The HAK1 transporter showed a high concentrative capacity and is identified as the K(+)-H+ symporter described in N. crassa, whereas TRK1 might be a K+ uniporter. Although the co-existence of K+ transporters of the TRK and HAK types in the same species had not been reported formerly, we discuss whether this co-existence may be the normal situation in soil fungi.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2958.1999.01192.xDOI Listing

Publication Analysis

Top Keywords

neurospora crassa
8
corresponding cdnas
8
saccharomyces cerevisiae
8
transporters described
8
crassa trk1
8
trk1 delta
8
delta trk2
8
trk2 delta
8
delta mutant
8
kinetic characteristics
8

Similar Publications

Melatonin, a molecule with diverse biological functions, is ubiquitously present in living organisms. There is significant interest in understanding melatonin signal transduction pathways in humans, particularly due to its critical role in regulating the sleep-wake cycle. However, a knowledge gap remains in fully elucidating the mechanisms by which melatonin influences circadian regulation.

View Article and Find Full Text PDF

Development of translationally active cell lysates from different filamentous fungi for application in cell-free protein synthesis.

Enzyme Microb Technol

January 2025

Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, Senftenberg 01968, Germany. Electronic address:

There is an enormous potential for cell-free protein synthesis (CFPS) systems based on filamentous fungi in view of their simple, fast and mostly inexpensive cultivation with high biomass space-time yields and in view of their catalytic capacity. In 12 of the 22 different filamentous fungi examined, in vitro translation of at least one of the two reporter proteins GFP and firefly luciferase was detected. The lysates showing translation of a reporter protein usually were able to synthesize a functional cell-free expressed unspecific peroxygenase (UPO) from the basidiomycete Cyclocybe (Agrocybe) aegerita.

View Article and Find Full Text PDF

In vegetative hyphae, chitin, β-1,3-glucan (laminarin), and a mixed β-1,3-/β-1,4-glucan (lichenin) are the major cell wall polysaccharides. GH72 enzymes have been shown to function as β-1,3-glucanases and glucanosyltransferases and can function in crosslinking β-1,3-glucans together. To characterize the enzymatic activities of the enzymes, we expressed GEL-1 with a HIS6 tag in A chimeric maltose binding protein:GEL-2 was produced in .

View Article and Find Full Text PDF

Uricase from , a Candidate for Industrial Application of Reducing Uric Acid Content of Bean Products.

J Agric Food Chem

January 2025

Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Shanghai 201210, China.

Microbial uricase is an essential enzyme in purine degradation and the development of low-purine food. High enzyme activity and an appropriate optimum pH must be established for low-purine food. Uricases from , , , , and were heterologously expressed in .

View Article and Find Full Text PDF

Modulating the aroma and taste profile of soybean using novel strains for fermentation.

Curr Res Food Sci

December 2024

Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore, 117543, Singapore.

A key factor influencing consumer acceptance of soybean products is the aroma and taste profile, which can be modulated through fermentation using unique microbial strains. This study aimed to identify and characterize novel microbial strains with the potential to enhance flavour profiles including umami, while reducing undesirable flavour notes such as beany aromas. The results showed an 800% (8-fold) increase in free amino acids in samples fermented with , which correlated with an increase in umami intensity as measured using an E-tongue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!