Angiosarcomas apparently derive from blood vessel endothelial cells; however, occasionally their histological features suggest mixed origin from blood and lymphatic endothelia. In the absence of specific positive markers for lymphatic endothelia the precise distinction between these components has not been possible. Here we provide evidence by light and electron microscopic immunohistochemistry that podoplanin, a approximately 38-kd membrane glycoprotein of podocytes, is specifically expressed in the endothelium of lymphatic capillaries, but not in the blood vasculature. In normal skin and kidney, podoplanin colocalized with vascular endothelial growth factor receptor-3, the only other lymphatic marker presently available. Complementary immunostaining of blood vessels was obtained with established endothelial markers (CD31, CD34, factor VIII-related antigen, and Ulex europaeus I lectin) as well as podocalyxin, another podocytic protein that is also localized in endothelia of blood vessels. Podoplanin specifically immunolabeled endothelia of benign tumorous lesions of undisputed lymphatic origin (lymphangiomas, hygromas) and was detected there as a 38-kd protein by immunoblotting. As paradigms of malignant vascular tumors, poorly differentiated (G3) common angiosarcomas (n = 8), epitheloid angiosarcomas (n = 3), and intestinal Kaposi's sarcomas (n = 5) were examined for their podoplanin content in relation to conventional endothelial markers. The relative number of tumor cells expressing podoplanin was estimated and, although the number of cases in this preliminary study was limited to 16, an apparent spectrum of podoplanin expression emerged that can be divided into a low-expression group in which 0-10% of tumor cells contained podoplanin, a moderate-expression group with 30-60% and a high-expression group with 70-100%. Ten of eleven angiosarcomas and all Kaposi's sarcomas showed mixed expression of both lymphatic and blood vascular endothelial phenotypes. By double labeling, most podoplanin-positive tumor cells coexpressed endothelial markers of blood vessels, whereas few tumor cells were positive for individual markers only. From these results we conclude that (1) podoplanin is a selective marker of lymphatic endothelium; (2) G3 angiosarcomas display a quantitative spectrum of podoplanin-expressing tumor cells; (3) in most angiosarcomas, a varying subset of tumor cells coexpresses podoplanin and endothelial markers of blood vessels; and (4) all endothelial cells of Kaposi's sarcomas expressed the lymphatic marker podoplanin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1849992PMC
http://dx.doi.org/10.1016/S0002-9440(10)65285-6DOI Listing

Publication Analysis

Top Keywords

tumor cells
24
blood vessels
16
endothelial markers
16
kaposi's sarcomas
12
podoplanin
11
lymphatic
10
endothelial
9
blood
9
endothelial phenotypes
8
blood lymphatic
8

Similar Publications

Purpose: Human epidermal growth factor receptor 2 (HER2)-targeted therapies have shown promise in treating -amplified metastatic colorectal cancer (mCRC). Identifying optimal biomarkers for treatment decisions remains challenging. This study explores the potential of artificial intelligence (AI) in predicting treatment responses to trastuzumab plus pertuzumab (TP) in patients with -amplified mCRC from the phase II TRIUMPH trial.

View Article and Find Full Text PDF

Background And Objectives: Breast cancers (BCs) of patients with paraneoplastic neurologic syndromes and anti-Yo antibodies (Yo-PNS) overexpress human epidermal growth factor receptor 2 (HER2) and display genetic alterations and overexpression of the Yo-onconeural antigens. They are infiltrated by an unusual proportion of B cells. We investigated whether these features were also observed in patients with PNS and anti-Ri antibodies (Ri-PNS).

View Article and Find Full Text PDF

FBXW7 metabolic reprogramming inhibits the development of colon cancer by down-regulating the activity of arginine/mToR pathways.

PLoS One

January 2025

Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China.

FBXW7 is a tumor suppressor gene that regulates metabolism and is associated with the onset and progression of colorectal cancer (CRC)), however, the precise mechanism whereby FBXW7 participates in the metabolic reprogramming of CRC remains unclear. Here, the research aims to reveal the association between the expression of FBXW7 and clinical variables and to investigate the molecular mechanism by which FBXW7 plays a critical role in the development of CRC. The clinical importance of FBXW7 in CRC was determined by immunohistochemistry.

View Article and Find Full Text PDF

Substantial epidemiological evidence suggests a significant correlation between particulate matter 2.5 (PM) and lung cancer. However, the mechanism underlying this association needs to be further elucidated.

View Article and Find Full Text PDF

Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!