Autologous fibroblasts as potential vehicle for regional ovarian cancer gene therapy.

Adv Exp Med Biol

Laboratoire d'Oncologie Moléculaire, INSERM CRI 9502/EA2145, Centre Jean Perrin, Clermont-Ferrand, France.

Published: March 1999

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4615-5357-1_51DOI Listing

Publication Analysis

Top Keywords

autologous fibroblasts
4
fibroblasts potential
4
potential vehicle
4
vehicle regional
4
regional ovarian
4
ovarian cancer
4
cancer gene
4
gene therapy
4
autologous
1
potential
1

Similar Publications

Background: Interest in biological augmentation for improving bone-tendon interface (BTI) healing after arthroscopic rotator cuff repair (ARCR) is growing. Dermal fibroblasts, known for collagen synthesis similar to tenocytes, have shown effectiveness in BTI healing in chronic rotator cuff tear (RCT) models in rabbits. However, no human clinical trials have been conducted.

View Article and Find Full Text PDF

Efficient and Rapid Generation of Neural Stem Cells by Direct Conversion Fibroblasts with Single microRNAs.

Stem Cells

January 2025

Medicine and Pharmacy Research Center, and Yantai Key Laboratory for Stem Cell Biology and Regenerative Medicine, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, China.

Neural stem cells (NSCs) have great potentials in the application of neurodegenerative disease therapy, drug screening, and disease modeling. However, current approaches for induced NSCs (iNSCs) generation from somatic cells are still slow and inefficient. Here we establish a rapid and efficient method of iNSCs generation from human and mouse fibroblasts by single microRNAs (miR-302a).

View Article and Find Full Text PDF

Urine-derived mesenchymal stromal/stem cells (USCs) could be a valuable source of cells in regenerative medicine because urine can be easily collected non-invasively. In this paper, USCs were isolated from both healthy dogs and dogs affected by chronic kidney disease (CKD), and the efficacy of collection methods (spontaneous micturition, bladder catheterization, and cystocentesis) were compared. Isolated cells were cultured in the presence of platelet-rich plasma and studied for their proliferative capacity (growth curve, doubling time, and colony forming unit), differentiation properties, expression of mesenchymal markers, and Klotho protein.

View Article and Find Full Text PDF

Reproducibility and Consistency of Isolation Protocols for Fibroblasts, Smooth Muscle Cells, and Epithelial Cells from the Human Vagina.

Cells

January 2025

Reproductive Biology Laboratory, Amsterdam UMC-Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.

(1) Background: For the reconstruction of a human vagina, various surgical procedures are available that are often associated with complications due to their failure to mimic the physiology of the human vagina. We recently developed a vascularized, organ-specific matrix from healthy human vaginal wall tissue with suitable biomechanical properties. A superior graft would require further extensive colonization with autologous vaginal cells to reduce complications upon implantation.

View Article and Find Full Text PDF

Optimizing the regenerative potential of vaginal fibroblasts: The role of autologous platelet-rich plasma and hyaluronic acid in vitro.

Maturitas

January 2025

Faculty of Medicine, Geneva University, 1205 Geneva, Switzerland; Department of Pediatrics, Gynecology and Obstetrics, Division of Gynecology, Urogynecology Unit, Geneva University Hospitals, Geneva, Switzerland. Electronic address:

Objective: Many postmenopausal women suffering from vulvovaginal atrophy are looking for non-hormonal treatments. Platelet-rich plasma (PRP) therapy has emerged as a novel and promising approach for gynecological applications. PRP is an autologous blood product rich in growth factors used to stimulate tissue regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!