On the basis of cytochemical and morphologic differences, two classes of gamma-aminobutyric acidergic (GABAergic) interneurons expressing calcium-binding proteins have been identified in the striatum of adult animals: neurons expressing either parvalbumin (PV) or calretinin (CR). The function of these calcium-binding proteins is not clear, however, they are associated with distinct classes of inhibitory interneurons within the adult neostriatum. By using immunocytochemical techniques, we analyzed the postnatal maturation and the spatiotemporal distribution of PV- and CR-positive neurons in the rat neostriatum compared with a third class of interneurons characterized by the expression of the acetylcholine-synthesizing enzyme, choline acetyltransferase (ChAT). PV-positive cells appeared initially on postnatal day 9 in the lateral region of the striatum. During postnatal weeks 2 and 3, the numbers of PV-positive neurons increased, and this cell population spread progressively in a lateromedial direction. In contrast, CR-expressing neurons were present at birth. During the first few days after birth, the number of CR-immunoreactive cells increased, reaching a peak on postnatal day 5 before declining during the following 2 weeks. A mediolateral gradient was evident temporarily. ChAT-containing neurons were detectable at birth in the lateral striatum. During postnatal weeks 1 and 2, the neurons matured along a lateral-to-medial gradient. The results indicate that the maturation of striatal interneurons is regulated differentially during postnatal development, resulting in a distinct spatiotemporal genesis of phenotypes. The sequential expression of CR and PV suggests a stage-dependent development of subsets of inhibitory interneurons and, hence, the stage-dependent maturation of functionally distinct inhibitory circuits within the neostriatum.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(sici)1096-9861(19990308)405:2<185::aid-cne4>3.0.co;2-bDOI Listing

Publication Analysis

Top Keywords

postnatal development
8
rat neostriatum
8
calcium-binding proteins
8
inhibitory interneurons
8
postnatal day
8
striatum postnatal
8
postnatal weeks
8
postnatal
7
interneurons
6
neurons
6

Similar Publications

Inhibition mechanism of Microcystis aeruginosa in coculture of Lemna and Azolla: Insights from non-targeted Metabonomics.

Plant Physiol Biochem

January 2025

College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China. Electronic address:

Microcystis aeruginosa, a harmful alga in cyanobacterial blooms, damages aquatic ecosystems. Species diversity may control the blooms by increasing ecosystem stability and resource utilization. The growth and photosynthetic systems of M.

View Article and Find Full Text PDF

Multiple insights into differential Cd detoxification mechanisms in new germplasms of mung bean (Vigna radiata L.) and potential mitigation strategy.

Plant Physiol Biochem

December 2024

College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China. Electronic address:

Long-term cadmium (Cd) exposure inhibits plant growth and development, reduces crop yield and quality, and threatens food security. Exploring the Cd tolerance mechanisms and safe production of crops in Cd-contaminated environment has become a worldwide concern. In this study, mung bean (Vigna radiata L.

View Article and Find Full Text PDF

Epiregulin ameliorates ovariectomy-induced bone loss through orchestrating the differentiation of osteoblasts and osteoclasts.

J Bone Miner Res

January 2025

NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.

Epiregulin plays a role in a range of biological activities including malignancies. This study aims to investigate the potential contribution of epiregulin to bone cell differentiation and bone homeostasis. The data showed that epiregulin expression was upregulated during osteogenesis but downregulated during adipogenesis.

View Article and Find Full Text PDF

Telomerase in cancer- ongoing quest and future discoveries.

Mol Biol Rep

January 2025

Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

Telomerase, constituted by the dynamic duo of telomerase reverse transcriptase (TERT), the catalytic entity, and an integral RNA component (TERC), is predominantly suppressed in differentiated human cells due to postnatal transcriptional repression of the TERT gene. Dysregulation of telomerase significantly contributes to cancer development via telomere-dependent and independent mechanisms. Telomerase activity is often elevated in advanced cancers, with TERT reactivation and upregulation of TERC observed in early tumorigenesis.

View Article and Find Full Text PDF

Quantifying natural amyloid plaque accumulation in the continuum of Alzheimer's disease using ADNI.

J Pharmacokinet Pharmacodyn

January 2025

Global PK/PD/PMx, Eli Lilly and Company, 8 Arlington Square West, Downshire Way, Bracknell, Berkshire, RG12 1PU, UK.

Brain amyloid beta neuritic plaque accumulation is associated with an increased risk of progression to Alzheimer's disease (AD) [Pfeil, J., et al. in Neurobiol Aging 106: 119-129, 2021].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!