It has been suggested that stimulus dependence is a general feature of all developing sensory systems. We tested this idea for the developing zebrafish vestibular system using a bioreactor the National Aeronautic and Space Agency designed to simulate microgravity for cells in culture on earth. We replaced the culture medium with aquarium water and maintained zebrafish eggs/hatchlings in the bioreactor for either 72 or 96 h postfertilization. These experimental animals displayed a swimming behavior that was indistinguishable from the control animals when illuminated from above. However, when illuminated from below, experimental animals swam not only dorsal surface up, but also lying on their side; they corkscrewed, swam vertical loops, and occasionally even swam upside down. When incubated in the bioreactor for 96 h, the saccular otolith was significantly smaller than normal, suggesting that otolith development was either delayed or slower than normal. When incubated in the bioreactor for 72 h, some animals were missing one or more otoliths. In contrast, control animals all had two otoliths on each side. This supports the idea that otolith development was delayed. Immediately upon removal from the bioreactor at 96 h, experimental animals showed some signs of compensatory eye rotation, but with a much less clear relationship between the orientation of the eye and the direction of gravity than the age-matched control animals. This difference was still obvious 1 day later. These results support the idea that development of the vestibular system in zebrafish is dependent on the presence of the normal stimulus the system is designed to detect.

Download full-text PDF

Source

Publication Analysis

Top Keywords

vestibular system
12
experimental animals
12
control animals
12
stimulus dependence
8
incubated bioreactor
8
otolith development
8
development delayed
8
animals
7
bioreactor
5
development
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!