The distribution of AMPA-selective glutamate receptor subunits was studied in the cat retina using antisera against GluR1 and GluR2/3. Both antisera were localized in postsynaptic sites in the outer plexiform layer (OPL) as well as the inner plexiform layer (IPL). Immunoreactivity for GluR1 was seen in a subpopulation of OFF cone bipolar cells and a number of amacrine and ganglion cells. Within the IPL, processes staining for GluR1 received input from OFF and ON cone bipolar cells but not from rod bipolars. Labeling for GluR2/3 was seen in horizontal cells, an occasional cone bipolar cell, and numerous amacrine and ganglion cells. In the IPL, GluR2/3 staining was postsynaptic to cone bipolar cells in both sublaminae. AII amacrine cells which receive rod bipolar input were also labeled for GluR2/3. With both antisera, staining was limited to a single member of the bipolar dyad complex, providing morphological evidence for functional diversity in glutamatergic pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1017/s0952523899161121DOI Listing

Publication Analysis

Top Keywords

cone bipolar
16
bipolar cells
12
ampa-selective glutamate
8
glutamate receptor
8
receptor subunits
8
cat retina
8
glur2/3 antisera
8
plexiform layer
8
amacrine ganglion
8
ganglion cells
8

Similar Publications

Evolution of rod bipolar cells and rod vision.

J Physiol

January 2025

Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA.

Bipolar cells are vertebrate retinal interneurons conveying signals from rod and cone photoreceptors to amacrine and ganglion cells. Bipolar cells are found in all vertebrates and have many structural and molecular affinities with photoreceptors; they probably appeared very early during vertebrate evolution in conjunction with rod and cone progenitors. There are two types of bipolar cells, responding to central illumination with depolarization (ON) or hyperpolarization (OFF).

View Article and Find Full Text PDF

Molecular characterization and sub-retinal transplantation of hypoimmunogenic human retinal sheets in a minipig model of severe photoreceptor degeneration.

Development

December 2024

Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada.

Article Synopsis
  • * Researchers created retinal sheets (RSs) using induced pluripotent stem cells, which contained precursors capable of developing into mature cone cells, mimicking the development of the human retina.
  • * In a test on pigs with retinal degeneration, these grafted RSs integrated into the retina and demonstrated some function, indicating potential for future therapeutic applications despite ongoing challenges.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of mechanosensitive channels (MSCs) in the retina, particularly how they relate to conditions like glaucoma and retinal injuries caused by increased pressure.
  • Using advanced techniques, the researchers analyzed the expression of various MSCs in different retinal cells, including Müller cells and retinal ganglion cells (RGCs).
  • They found a critical balance between hyperpolarizing and depolarizing MSCs in retinal neurons, suggesting that this balance may affect how vulnerable these neurons are to pressure-induced damage, highlighting potential new avenues for treatment.
View Article and Find Full Text PDF

In congenital stationary night blindness, type 2 (CSNB2)-a disorder involving the Ca1.4 (L-type) Ca channel-visual impairment is mild considering that Ca1.4 mediates synaptic release from rod and cone photoreceptors.

View Article and Find Full Text PDF

Abnormal outer and inner retina in a mouse model of Huntington's disease with age.

Front Aging Neurosci

October 2024

Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, China.

Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by motor dysfunction and cognitive decline. While retinal abnormalities have been documented in some HD patients and animal models, the nature of these abnormalities-specifically whether they originate in the inner or outer retina-remains unclear, particularly regarding their progression with age. This study investigates the retinal structure and function in HD transgenic mice (R6/1) compared to C57BL/6 J control mice at 2, 4, and 6 months of age, encompassing both pre-symptomatic and symptomatic stages of HD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!