Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevd.53.2317DOI Listing

Publication Analysis

Top Keywords

polarized unpolarized
4
unpolarized nucleon
4
nucleon structure
4
structure functions
4
functions lattice
4
lattice qcd
4
polarized
1
nucleon
1
structure
1
functions
1

Similar Publications

We derive the Goos-Hänchen (GH) and Imbert-Fedorov (IF) shifts of random electromagnetic beams with arbitrary state and degree of polarization and spatial coherence. Further, we demonstrate the general formalism by calculating analytic expressions for the GH and IF shifts of an electromagnetic Gaussian Schell-model (EGSM) beam and show that the GH shifts may exist irrespective of the degree and state of polarization of the beam, while the IF shifts vanish when the beam is either s or p polarized or completely unpolarized. In addition, the spatial coherence width of the EGSM beam is found to influence only the angular GH and IF shifts.

View Article and Find Full Text PDF

The eukaryotic cytoskeleton is an intricate network of three types of mechanically distinct biopolymers - actin filaments, microtubules and intermediate filaments (IFs). These filamentous networks determine essential cellular functions and properties. Among them, microtubules are important for intracellular transport and establishing cell polarity during migration.

View Article and Find Full Text PDF

Highly Efficient and Linearly Polarized Light Emission of Micro-LED Integrated with Double-Functional Meta-Grating.

Nano Lett

January 2025

Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Provincial Key Laboratory of Photonics and Information Technology, Xi'an Jiaotong University, Xi'an 710049, China.

Linearly polarized micro light-emitting diodes (LP-Micro-LEDs) exhibit exceptional potential across diverse fields. The existing methods to introduce polarization to initially unpolarized Micro-LEDs and to further enhance the degree of polarization are, however, at the expense of low luminous efficiency. We fabricated a GaN-based blue Micro-LED integrated with a Al nanograting and a specially designed Ag/GaN meta-grating, which overcomes the dilemma between the luminous efficiency and polarization degree by simultaneously introducing the effects of mode selection and energy recycling.

View Article and Find Full Text PDF

Environmental fluorescence measurements sometimes use water Raman scattering as an internal standard to compensate for path length, lensing effects, and turbidity. Fluorescent dissolved organic matter (FDOM) in water may interfere strongly with the measurement of this reference. However, fluorescence in fluid solution is largely unpolarized, while the OH stretching Raman band of water is always strongly polarized.

View Article and Find Full Text PDF

Controlling thermal emission with metasurfaces and its applications.

Nanophotonics

April 2024

National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China.

Thermal emission caused by the thermal motion of the charged particles is commonly broadband, un-polarized, and incoherent, like a melting pot of electromagnetic waves, which makes it unsuitable for infrared applications in many cases requiring specific thermal emission properties. Metasurfaces, characterized by two-dimensional subwavelength artificial nanostructures, have been extensively investigated for their flexibility in tuning optical properties, which provide an ideal platform for shaping thermal emission. Recently, remarkable progress was achieved not only in tuning thermal emission in multiple degrees of freedom, such as wavelength, polarization, radiation angle, coherence, and so on but also in applications of compact and integrated optical devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!