Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevd.52.1770DOI Listing

Publication Analysis

Top Keywords

solar neutrinos
4
neutrinos principle
4
principle equivalence
4
solar
1
principle
1
equivalence
1

Similar Publications

Bound-State Beta Decay of ^{205}Tl^{81+} Ions and the LOREX Project.

Phys Rev Lett

December 2024

Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Zellescher Weg 19, 01062 Dresden, Germany.

Stable ^{205}Tl ions have the lowest known energy threshold for capturing electron neutrinos (ν_{e}) of E_{ν_{e}}≥50.6  keV. The Lorandite Experiment (LOREX), proposed in the 1980s, aims at obtaining the longtime averaged solar neutrino flux by utilizing natural deposits of Tl-bearing lorandite ores.

View Article and Find Full Text PDF
Article Synopsis
  • The XENONnT dark matter experiment successfully measured nuclear recoils from solar ^{8}B neutrinos, marking a significant advancement in neutrino detection technology.
  • Using a two-phase time projection chamber with a 5.9 t liquid xenon target, the experiment produced 37 observed events, which surpassed the expected background events, indicating a notable signal.
  • The results provide a measured solar neutrino flux consistent with previous studies and confirm the neutrino cross section predictions aligned with the Standard Model, showcasing the effectiveness of dark matter detectors in neutrino research.
View Article and Find Full Text PDF

First Indication of Solar ^{8}B Neutrinos through Coherent Elastic Neutrino-Nucleus Scattering in PandaX-4T.

Phys Rev Lett

November 2024

School of Physics and Astronomy, Shanghai Jiao Tong University, Key Laboratory for Particle Astrophysics and Cosmology (MoE), Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai 200240, China.

Article Synopsis
  • The PandaX-4T detector at the China Jinping Underground Laboratory detects solar ^{8}B neutrinos through coherent scattering with liquid xenon nuclei, focusing on specific energy thresholds for data selection.
  • The experiment analyzed data from both commissioning and initial science runs, observing a total of 3 paired events and 332 unpaired ionization signals, with background events estimated at 2.8±0.5 and 251±32, respectively.
  • The results indicate a solar ^{8}B neutrino flux of (8.4±3.1)×10^{6}  cm^{-2} s^{-1}, aligning with standard solar model predictions, and providing the first signs of solar neutr
View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed 5804 days of Super-Kamiokande data from 1996 to 2018 to detect variations in solar ^{8}B neutrino flux.
  • The researchers utilized a five-day interval measurement approach and employed maximum likelihood and Lomb-Scargle methods to find any periodic modulations.
  • They found a significant modulation related to Earth's elliptical orbit around the Sun, with measurements of eccentricity and perihelion shift aligning with astronomical data.
View Article and Find Full Text PDF

Resonances of Supernova Neutrinos in Twisting Magnetic Fields.

Phys Rev Lett

March 2024

Instituto de Física Gleb Wataghin - UNICAMP, 13083-859, Campinas, São Paulo, Brazil.

We investigate the effect of resonant spin conversion of the neutrinos induced by the geometrical phase in a twisting magnetic field. We find that the geometrical phase originating from the rotation of the transverse magnetic field along the neutrino trajectory can trigger a resonant spin conversion of Dirac neutrinos inside the supernova, even if there were no such transitions in the fixed-direction field case. We have shown that, even though resonant spin conversion is too weak to affect solar neutrinos, it could have a remarkable consequence on supernova neutronization bursts where very intense magnetic fields are quite likely.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!