Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevd.51.1929DOI Listing

Publication Analysis

Top Keywords

quantum stability
4
stability vortex
4
vortex state
4
state abelian
4
abelian higgs
4
higgs model
4
quantum
1
vortex
1
state
1
abelian
1

Similar Publications

Carbon Doping in Small Lithium Clusters: Structural, Energetic, and Electronic Properties from Quantum Monte Carlo Calculations.

ACS Omega

January 2025

Instituto de Física, Universidade Federal de Goiás, Goiânia, Goiás 74001-970, Brazil.

We investigate the energetic and structural properties of small lithium clusters doped with a carbon atom using a combination of computational methods, including density functional theory (DFT), diffusion quantum Monte Carlo (DMC), and the Hartree-Fock (HF) approximation. We calculate the lowest energy structures, total ground-state energies, electron populations, binding energies, and dissociation energies as a function of cluster size. Our results show that carbon doping significantly enhances the stability of lithium clusters, increasing the magnitude of the binding energy by 0.

View Article and Find Full Text PDF

Addressing the challenges of the efficiency and stability of red perovskite nanocrystals is imperative for the successful deployment of these materials in displays and lighting applications. the structural dynamic changes of red perovskite quantum dots (PQDs) are explored using a flow chemistry system to solve the above hurdles. First, the ultrabright red-emitting PQDs of CsPb(Br,I) are achieved by adjusting ligand distribution (oleic acid and oleyamine) in combination with different flow rates and equivalence ratios.

View Article and Find Full Text PDF

Efficient Orange Light-Emitting Diodes from Nontoxic Organic-Inorganic Hybrid Copper Halides Enabled by Nonionic Surfactant Chemisorption.

Nano Lett

January 2025

Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China.

Ternary copper halides with an eco-friendly property have emerged as attractive candidates to replace toxic lead-containing perovskites for light-emitting diodes (LEDs), yet achieving long-wavelength electroluminescence remains unexplored. Herein, we report the first realization of orange-emitting LEDs (595 nm) based on nontoxic organic-inorganic PEACuI (PEA = β-phenylethylamine) films enabled by a nonionic surfactant poly(propylene glycol) bis(2-aminopropyl ether) (APPG) chemisorption. Experimental and theoretical analyses rationalize that the APPG additive has strong chemisorption with the Cu-I framework within the grain boundaries of PEACuI films, which not only improves the film's morphology but also passivates the iodine vacancy defects.

View Article and Find Full Text PDF

Quasi-2D perovskite made with organic spacers co-crystallized with inorganic cesium lead bromide inorganics is demonstrated for near unity photoluminescence quantum yield at room temperature. However, light emitting diodes made with quasi-2D perovskites rapidly degrade which remains a major bottleneck in this field. In this work, It is shown that the bright emission originates from finely tuned multi-component 2D nano-crystalline phases that are thermodynamically unstable.

View Article and Find Full Text PDF

Understanding the Effects of Edge Planes in Porous Carbon: Quantum Capacitance and Electrolyte Behavior in Supercapacitor.

Chemphyschem

January 2025

Chinese Academy of Sciences, Institute of Coal Chemistry, 27 South Taoyuan Road, Taiyuan, Shanxi, P.R.China, 030001, Taiyuan, CHINA.

Electric double layer capacitors (EDLC) require large specific surface area to provide high power density. The generation of pores increases the electrochemical capacitance with more graphitic edge planes exposed to the electrolyte. Conventional theory believes this increasing in capacitance is owed to the increased specific surface area, but our work uncovers another mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!