Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevd.50.6610 | DOI Listing |
Nature
January 2025
Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, Canada.
In a dilute two-dimensional electron gas, Coulomb interactions can stabilize the formation of a Wigner crystal. Although Wigner crystals are topologically trivial, it has been predicted that electrons in a partially filled band can break continuous translational symmetry and time-reversal symmetry spontaneously, resulting in a type of topological electron crystal known as an anomalous Hall crystal. Here we report signatures of a generalized version of the anomalous Hall crystal in twisted bilayer-trilayer graphene, whose formation is driven by the moiré potential.
View Article and Find Full Text PDFNature
January 2025
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Electrons in topological flat bands can form new topological states driven by correlation effects. The pentalayer rhombohedral graphene/hexagonal boron nitride (hBN) moiré superlattice was shown to host fractional quantum anomalous Hall effect (FQAHE) at approximately 400 mK (ref. ), triggering discussions around the underlying mechanism and role of moiré effects.
View Article and Find Full Text PDFQuantum materials governed by emergent topological fermions have become a cornerstone of physics. Dirac fermions in graphene form the basis for moiré quantum matter and Dirac fermions in magnetic topological insulators enabled the discovery of the quantum anomalous Hall (QAH) effect. By contrast, there are few materials whose electromagnetic response is dominated by emergent Weyl fermions.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China.
The chiral edge current is the boundary manifestation of the Chern number of a quantum anomalous Hall (QAH) insulator. The van der Waals antiferromagnet MnBiTe is theorized to be a QAH in odd-layers but has shown Hall resistivity below the quantization value at zero magnetic field. Here, we perform scanning superconducting quantum interference device (sSQUID) microscopy on these seemingly failed QAH insulators to image their current distribution.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Background: Rapid eye movement sleep behavior disorder (RBD) is associated with pathological α-synuclein deposition and may have different damage directions due to α-synuclein spreading orientations. Recent functional imaging studies of Parkinson's disease (PD) with RBD have identified abnormalities in connectivity, but effective connectivity (EC) for this altered orientation is understudied. Here, we aimed to explore altered intrinsic functional connectivity (FC) and EC in PD patients with probable RBD (pRBD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!