Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevd.48.3174 | DOI Listing |
Biomedicines
December 2024
Department of Pharmaceutical Technology, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania.
: This study explored the potential of MCM-48 mesoporous silica matrices as a drug delivery system for metformin hydrochloride, aimed at improving the therapeutic management of type 2 diabetes mellitus. The objectives included the synthesis and characterization of MCM-48, assessment of its drug loading capacity, analysis of drug release profiles under simulated physiological conditions, and the development of a multifractal dynamics-based theoretical framework to model and interpret the release kinetics. : MCM-48 was synthesized using a sol-gel method and characterized by SEM-EDX, TEM, and nitrogen adsorption techniques.
View Article and Find Full Text PDFJ Affect Disord
January 2025
School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA. Electronic address:
It is one of the strategies to study the complexity of spontaneous fluctuation of brain neurons based on resting-state functional magnetic resonance imaging (rs-fMRI), but the multifractal characteristics of spontaneous fluctuation of brain neurons in psychiatric diseases need to be studied. Therefore, this paper will study the multifractal spontaneous brain activity changes in psychiatric disorders using the multifractal detrended fluctuation analysis algorithm based on the UCLA datasets. Specifically: (1) multifractal characteristics in adult attention deficit-hyperactivity disorder (ADHD), bipolar disorder (BP), and schizophrenia (SCHZ); (2) the source of those multifractal characteristics.
View Article and Find Full Text PDFJ Biophotonics
January 2025
School of Optoelectronics, Zhejiang University, Hangzhou, China.
The article describes a technique for digital holographic reconstruction of complex amplitude fields in diffuse blood facies using laser polarization-interference phase scanning to isolate a single scattered component of the object field. This method serves as the basis for developing algorithms for Mueller-matrix reconstruction of linear and circular birefringence parameters in the polycrystalline architectonics of blood facies. Statistical (central moments of the 1st-4th orders) and multifractal analyses (fractal dimension spectra) are applied to study the optical anisotropy maps of polycrystalline networks during blood dehydration.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington, Texas 76019, United States.
Fluorescence fluctuation spectroscopy experiments were conducted to better understand the complex mass transport dynamics of organic molecules in liquid-filled nanoporous media. Anodic aluminum oxide (AAO) membranes incorporating 10 and 20 nm diameter cylindrical pores were employed as model materials. Nile red (NR) dye was used as a fluorescent tracer.
View Article and Find Full Text PDFPhys Rev E
November 2024
Institute of Earthquake Prediction Theory and Mathematical Geophysics, RAS, Profsoyuznaya 84/32, 117997 Moscow, Russia.
We study two prototypical models of self-organized criticality, namely sandpile automata with deterministic (Bak-Tang-Wiesenfeld) and probabilistic (Manna model) dynamical rules, focusing on the nature of stress fluctuations induced by driving-adding grains during avalanche propagation, and dissipation through avalanches that hit the system boundary. Our analysis of stress evolution time series reveals robust cyclical trends modulated by collective fluctuations with dissipative avalanches. These modulated cycles attain higher harmonics, characterized by multifractal measures within a broad range of timescales.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!