Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevd.46.853 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
Laboratory for Spectroscopy, Molecular Modeling and Structure Determination, Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, 03-195 Warsaw, Poland. Electronic address:
The Raman spectra of lanthanide [Ln(HO)(Ala)](ClO) crystals were measured with 488, 532, 633, and 1064 nm laser lines, and ROA of complexes in water were collected using 532 nm excitation. As in IR and VCD, ν(CO) stretching and β(OCO) bending vibration bands showed a tendency typical to the lanthanide contraction effect. However, in Raman, the effect is less pronounced than the IR spectrum because it is strongly perturbed by lanthanide ion luminescence, which comes from the 4f → 4f transitions.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027 Zhejiang, China.
Chiral vortices and their phase transition in ferroelectric/dielectric heterostructures have drawn significant attention in the field of condensed matter. However, the dynamical origin of the chiral phase transition from achiral to chiral polar vortices has remained elusive. Here, we develop a phase-field perturbation model and discover the softening of out-of-plane vibration mode of polar vortices in [(PbTiO)/(SrTiO)] superlattices at a critical epitaxial strain or temperature.
View Article and Find Full Text PDFBrain Sci
November 2024
Laser Physics Laboratory, University of Rennes, 35042 Rennes Cedex, France.
Acoustic noise is known to perturb reading for good readers, including children and adults. This external acoustic noise interfering at the multimodal areas in the brain causes difficulties reducing reading and writing performances. Moreover, it is known that people with developmental coordination disorder (DCD) and dyslexia have reading deficits even in the absence of acoustic noise.
View Article and Find Full Text PDFChaos
January 2025
School of Mechanical and Power Engineering, Zhengzhou University, Science Road 100, 450001 Zhengzhou, China.
In this paper, the complex and dynamically rich distribution of stable phases in the well-known discrete Ikeda map is studied in detail. The unfolding patterns of these stable phases are described through three complementary stability diagrams: the Lyapunov stability diagram, the isoperiod stability diagram, and the isospike stability diagram. The adding-doubling complexification cascade and fascinating non-quantum chiral pairs are discovered, marking the first report of such structures in discrete mapping.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0299, United States of America.
Evidence of chirality was observed at the Fe metal center in Fe(III) spin crossover coordination salts [Fe(qsal)][Ni(dmit)] and [Fe(qsal)](TCNQ)from x-ray absorption (XAS) spectroscopy at the Fe 2pcore threshold. Based on the circularly polarized XAS data, the x-ray natural circular dichroism for [Fe(qsal)][Ni(dmit)] and [Fe(qsal)](TCNQ)is far stronger than seen for [Fe(qsal)]Cl suggesting this natural circular dichroism signature is a ligand effect rather than a result of just a loss of octahedral symmetry on the Fe core. The larger the chiral effects in the Fe 2p core to bound XAS, the greater the perturbation of the Fe 2pto 2pspin-orbit splitting seen in the XAS spectra.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!