Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.49.3492 | DOI Listing |
J Phys Condens Matter
January 2025
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, No.8 South Third Street, Zhongguancun, Beijing, 100190, CHINA.
We systematically investigate the magnetization and thermodynamic responses associated with antiferromagnetic (AFM) transitions in single crystals of the magnetic semiconductor Eu3InAs3. The linear thermal expansion measurements around the AFM transition temperatures, TN1 and TN2, indicate an expansion along the a axis and contraction along the b and c axes. The calculated ∆V/V(T) shows a continuous change at TN, indicating a second-order magnetic phase transition.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
Adiabatic demagnetization refrigeration (ADR) based on the magnetocaloric effect (MCE) is a promising technique to achieve cryogenic temperature. However, magnetic entropy change (Δ), the driving force of ADR, remains far below theoretical -Δ = ln(2 + 1)/ for most magnetic refrigerants. Here, we report giant MCE in orthorhombic EuCl, where a ferromagnetic ground state with excellent single-ion behavior of Eu and free spins has been demonstrated by combining calculations with Brillouin function analysis and magnetic measurements.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2024
GKN Hoeganaes, Cinnaminson, NJ 08077, United States of America.
A bulk gadolinium (Gd) single crystal exhibits virtually zero remnant magnetization, a common trait among soft uniaxial ferromagnets. This characteristic is reflected in our magnetometry data showing virtually hysteresis free isothermal magnetization loops with large saturation magnetization. The absence of hysteresis allows to model the measured easy axis magnetization as a function of temperature and applied magnetic field, rather than a relation, which permits the application of Maxwell relations from equilibrium thermodynamics.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2024
Department of Physics, Bielefeld University, 33501 Bielefeld, Germany.
Magnetic cooling, a solid-state refrigeration technology based on the magnetocaloric effect, has attracted significant attention in space cooling due to its high energy-efficiency and environmental friendliness. Transition metal-based magnetocaloric materials (MCMs) with the merit of low-cost have emerged as promising candidates for efficient magnetic refrigeration applications. This review explores the intricate relationship between microstructure and multiple properties (e.
View Article and Find Full Text PDFChem Mater
September 2024
Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Zaragoza 50009, Spain.
Dense metal-organic frameworks with high spin paramagnetic nodes are competitive materials for cryogenic magnetic refrigeration, particularly in applications for which local cooling is advantageous. We focus on obtaining thin films of gadolinium formate, which has a large volumetric magnetocaloric effect. Continuous and homogeneous deposits of gadolinium formate are successfully formed on silicon by means of aerosol jet printing, with control over the film thickness from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!