Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.49.748DOI Listing

Publication Analysis

Top Keywords

spin mode
4
mode electrical
4
electrical resistivity
4
resistivity thermal
4
thermal conductivity
4
conductivity two-dimensional
4
two-dimensional hubbard
4
hubbard model
4
spin
1
electrical
1

Similar Publications

We propose a scheme to achieve nonreciprocal unconventional magnon blockade (UMB) via the Barnett effect in a spinning ferrimagnetic yttrium-iron-garnet sphere coupled to a microwave cavity that interacts with a parametric amplifier. We show that, with a strong cavity-magnon coupling regime, giant nonreciprocal UMB can emerge by appropriately choosing two sets of parameters in this system, i.e.

View Article and Find Full Text PDF

Background: Neurovascular coupling (NVC), as indicated by a comprehensive analysis of the amplitude of low-frequency fluctuation (ALFF) and cerebral blood flow (CBF), provides mechanistic insights into neurological disorders. Patients undergoing peritoneal dialysis (PD) and hemodialysis (HD) often face cognitive impairment, the causes of which are not fully understood.

Methods: ALFF was derived from functional magnetic resonance imaging, and CBF was quantified using arterial spin labeling in a cohort comprising 58 patients with PD, 60 patients with HD and 62 healthy controls.

View Article and Find Full Text PDF

Background: Pediatric growth hormone deficiency (GHD) is a disease resulting from the impaired growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis, but the effects of GHD on children's behavior and brain microstructural structure alterations have not yet been fully clarified. We aimed to investigate the quantitative profiles of gray matter and white matter in pediatric GHD using synthetic magnetic resonance imaging (MRI).

Methods: The data of 50 children with GHD and 50 typically developing (TD) children were prospectively collected.

View Article and Find Full Text PDF

Low-frequency noise in detection systems significantly affects the performance of ultrasensitive and ultracompact spin-exchange relaxation-free atomic magnetometers. High frequency modulation detection helps effectively suppress the 1/ noise and enhance the signal-to-noise ratio, but conventional modulators are bulky and restrict the development of integrated atomic magnetometer modulation-detection systems. Resonant metasurface-based thin-film lithium-niobate (TFLN) active optics can modulate free-space light within a compact configuration.

View Article and Find Full Text PDF

We introduce a computational methodology for evaluating and analyzing spin-vibration couplings in molecular systems, enabling insights into the interplay between electronic spins and molecular vibrations. By mapping ab initio electronic structure calculations onto molecular spin Hamiltonians, our approach captures those vibrational interactions potentially driving spin relaxation process. Spin-vibration couplings, derived from Holstein and Peierls terms, highlight the pivotal role of vibrational mode symmetry in spin decoherence and efficient energy dissipation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!