Acoustic plasmons and cuprate superconductivity.

Phys Rev B Condens Matter

Published: August 1993

Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.48.3455DOI Listing

Publication Analysis

Top Keywords

acoustic plasmons
4
plasmons cuprate
4
cuprate superconductivity
4
acoustic
1
cuprate
1
superconductivity
1

Similar Publications

All-Optical Generation and Detection of Coherent Acoustic Vibrations in Single Gallium Phosphide Nanoantennas Probed near the Anapole Excitation.

Nano Lett

January 2025

Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.

Nanostructured high-index dielectrics have shown great promise as low-loss photonic platforms for wavefront control and enhancing optical nonlinearities. However, their potential as optomechanical resonators has remained unexplored. In this work, we investigate the generation and detection of coherent acoustic phonons in individual crystalline gallium phosphide nanodisks on silica in a pump-probe configuration.

View Article and Find Full Text PDF

In this paper, we demonstrate that torsional surface elastic waves can propagate along the curved surface of a metamaterial elastic rod (cylinder) embedded in a conventional elastic medium. The crucial parameter of the metamaterial rod is its elastic compliance s44(1)ω, which varies as a function of frequency ω analogously to the dielectric function εω in Drude's model of metals. As a consequence, the elastic compliance s44(1)ω can take negative values s44(1)ω<0 as a function of frequency ω.

View Article and Find Full Text PDF

Chiral exceptional point enhanced active tuning and nonreciprocity in micro-resonators.

Light Sci Appl

January 2025

Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, 19716, USA.

Exceptional points (EPs) have been extensively explored in mechanical, acoustic, plasmonic, and photonic systems. However, little is known about the role of EPs in tailoring the dynamic tunability of optical devices. A specific type of EPs known as chiral EPs has recently attracted much attention for controlling the flow of light and for building sensors with better responsivity.

View Article and Find Full Text PDF

A smart probe for detection of sugar markers for applications in gastrointestinal barrier dysfunction.

Biosens Bioelectron

March 2025

Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford, Department of Radiology, Stanford School of Medicine, Stanford University, Palo Alto, CA, 94304, USA. Electronic address:

Article Synopsis
  • Gastrointestinal (GI) barrier dysfunction is a critical early indicator of multiple complex diseases, but current testing methods for saccharide molecules used to assess this function are expensive and time-consuming.
  • A new one-component system utilizing a naphthyl-pyridine core and boronic acid receptor has been developed for the early detection of saccharide biomarkers like lactulose, which indicates GI barrier issues.
  • The innovative design incorporates a scalable 96-well format with gold nanoparticles and combines plasmonics and fluorescence for sensitive lactulose quantification, aiming to create an affordable and portable diagnostic tool for routine GI permeability testing.
View Article and Find Full Text PDF

Sensitive detection of incident acoustic waves over a broad frequency band offers a faithful representation of photoacoustic pressure transients of biological microstructures. Here, we propose a plasmon waveguide resonance sensor for responding to the photoacoustic impulses. By sequentially depositing Au, MgF, and SiO films on a coverslip, a composite waveguide layer produces a tightly confined optical evanescent field at the SiO-water interface with extremely strong electric field intensity, enabling the retrieval of photoacoustic signals with an estimated noise-equivalent-pressure (NEP) sensitivity of ∼92 Pa and a -6-dB bandwidth of ∼208 MHz.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!