Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.48.16524DOI Listing

Publication Analysis

Top Keywords

aging two-dimensional
4
two-dimensional ising
4
ising spin
4
spin glasses
4
aging
1
ising
1
spin
1
glasses
1

Similar Publications

Precise Preparation of Size-Uniform Two-Dimensional Platelet Micelles Through Crystallization-Assisted Rapid Microphase Separation Using All-Bottlebrush-Type Block Copolymers with Crystalline Side Chains.

J Am Chem Soc

January 2025

Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.

Polymer nanoparticles with low curvature, especially two-dimensional (2D) soft materials, are rich in functions and outstanding properties and have received extensive attention. Crystallization-driven self-assembly (CDSA) of linear semicrystalline block copolymers is currently a common method of constructing 2D platelets of uniform size. Although accompanied by high controllability, this CDSA method usually and inevitably requires a longer aging time and lower assembly concentration, limiting the large-scale preparation of nanoaggregates.

View Article and Find Full Text PDF

Aging in a weighted ensemble of excitable and self-oscillatory neurons: The role of pairwise and higher-order interactions.

Chaos

January 2025

International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Bunkyo Ku, Tokyo 113 8654, Japan.

We investigate the aging transition in networks of excitable and self-oscillatory units as the fraction of inherently excitable units increases. Two network topologies are considered: a scale-free network with weighted pairwise interactions and a two-dimensional simplicial complex with weighted scale-free pairwise and triadic interactions. Without triadic interactions, the aging transition from collective oscillations to oscillation death (inhomogeneous stationary states) can occur either suddenly or through an intermediate state of partial oscillation.

View Article and Find Full Text PDF

Nanostructural Analysis of Age-Related Changes Affecting Human Dentin.

Calcif Tissue Int

January 2025

Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Osaka, Japan.

Human dentin performs its function throughout life, even though it is not remodeled like bone. Therefore, dentin must have extreme durability against daily repetitive loading. Elucidating its durability requires a comprehensive understanding of its shape, structure, and anisotropy at various levels of its structure.

View Article and Find Full Text PDF

We investigate the aging properties of phase-separation kinetics following quenches from T=∞ to a finite temperature below T_{c} of the paradigmatic two-dimensional conserved Ising model with power-law decaying long-range interactions ∼r^{-(2+σ)}. Physical aging with a power-law decay of the two-time autocorrelation function C(t,t_{w})∼(t/t_{w})^{-λ/z} is observed, displaying a complex dependence of the autocorrelation exponent λ on σ. A value of λ=3.

View Article and Find Full Text PDF

Osteoarthritis (OA) is one of the most prevalent joint diseases globally, characterized by the progressive breakdown of articular cartilage, resulting in chronic pain, stiffness, and loss of joint function. Despite its significant socioeconomic impact, therapeutic options remain limited, largely due to an incomplete understanding of the molecular mechanisms driving cartilage degradation and OA pathogenesis. Recent advances in in vitro modeling have revolutionized joint tissue research, transitioning from simplistic two-dimensional cell cultures to sophisticated three-dimensional (3D) constructs that more accurately mimic the physiological microenvironment of native cartilage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!