Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.47.13872 | DOI Listing |
Sci Rep
January 2025
College of Science, Xuchang University, Xuchang, 461000, China.
Spin and valley polarizations (P and P) and tunneling magnetoresistance (TMR) are demonstrated in the ferromagnetic/barrier/normal/barrier/ferromagnetic WSe junction, with the gate voltage and off-resonant circularly polarized light (CPL) applied to the two barrier regions. The minimum incident energy of non-zero spin- and valley-resolved conductance has been derived, which is consistent with numerical calculations and depends on the electric potential U, CPL intensity ΔΩ, exchange field h, and magnetization configuration: parallel (P) or antiparallel (AP). For the P (AP) configuration, the energy region with P = -1 or P = 1 is wider (narrower) and increases with ΔΩ.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea.
Fermi polarons are emerging quasiparticles when a bosonic impurity immersed in a fermionic bath. Depending on the boson-fermion interaction strength, the Fermi-polaron resonances exhibit either attractive or repulsive interactions, which impose further experimental challenges on understanding the subtle light-driven dynamics. Here, we report the light-driven dynamics of attractive and repulsive Fermi polarons in monolayer WSe devices.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
December 2024
Department of Physics and Astronomy, University of Exeter, Exeter, Devon EX4 4QL, UK.
Room-temperature cavity quantum electrodynamics with molecular materials in optical cavities offers exciting prospects for controlling electronic, nuclear and photonic degrees of freedom for applications in physics, chemistry and materials science. However, achieving strong coupling with molecular ensembles typically requires high molecular densities and substantial electromagnetic-field confinement. These conditions usually involve a significant degree of molecular disorder and a highly structured photonic density of states.
View Article and Find Full Text PDFMagn Reson Med
December 2024
Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
Purpose: To develop and validate a novel analytical approach simplifying , , proton density (PD), and off-resonance quantifications from phase-cycled balanced steady-state free precession (bSSFP) data. Additionally, to introduce a method to correct aliasing effects in undersampled bSSFP profiles.
Theory And Methods: Off-resonant-encoded analytical parameter quantification using complex linearized equations (ORACLE) provides analytical solutions for bSSFP profiles.
Phys Rev Lett
November 2024
Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland.
Cold ions in traps are well-established, highly controllable systems with a wide variety of applications in quantum science, precision spectroscopy, clocks, and chemistry. Nanomechanical oscillators are used in advanced sensing applications and for exploring the border between classical and quantum physics. Here, we report on the implementation of a hybrid system combining a metallic nanowire with laser-cooled ions in a miniaturized ion trap.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!