Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.47.13363DOI Listing

Publication Analysis

Top Keywords

photoluminescence absorption
4
absorption studies
4
studies defects
4
defects cdte
4
cdte znxcd1-xte
4
znxcd1-xte crystals
4
photoluminescence
1
studies
1
defects
1
cdte
1

Similar Publications

Emergence of Near-Infrared Photoluminescence via ZnS Shell Growth on the AgBiS Nanocrystals.

Chem Mater

January 2025

Graduate School of Biomedical Science and Engineering, Koç University, Istanbul 34450, Türkiye.

AgBiS nanocrystals (NCs), composed of nontoxic, earth-abundant materials and exhibiting an exceptionally high absorption coefficient from visible to near-infrared (>10 cm), hold promise for photovoltaics but have lack of photoluminescence (PL) due to intrinsic nonradiative recombination and challenging shell growth. In this study, we reported a facile wet-chemical approach for the epitaxial growth of ZnS shell on AgBiS NCs, which triggered the observation of PL emission in the near-infrared (764 nm). Since high quality of the core is critical for epitaxial shell growth, we first obtained rock-salt structured AgBiS NCs with high crystallinity, nearly spherical shape and monodisperse size distribution (<6%) via a dual-ligand approach reacting Ag-Bi oleate with elemental sulfur in oleylamine.

View Article and Find Full Text PDF

Resonantly Enhanced Hybrid Wannier-Mott-Frenkel Excitons in Organic-Inorganic Van Der Waals Heterostructures.

Adv Mater

January 2025

Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China.

Hybrid excitons formed via resonant hybridization in 2D material heterostructures feature both large optical and electrical dipoles, providing a promising platform for many-body exciton physics and correlated electronic states. However, hybrid excitons at organic-inorganic interface combining the advantages of both Wannier-Mott and Frenkel excitons remain elusive. Here, hybrid excitons are reported in the copper phthalocyanine/molybdenum diselenide (CuPc/MoSe) heterostructure (HS) featuring strong molecular orientation dependence by low-temperature photoluminescence and absorption spectroscopy.

View Article and Find Full Text PDF

The generation of radicals through photo-Fenton-like reactions demonstrates significant potential for remediating emerging organic contaminants (EOCs) in complex aqueous environments. However, the excitonic effect, induced by Coulomb interactions between photoexcited electrons and holes, reduces carrier utilization efficiency in these systems. In this study, we develop Cu single-atom-loaded covalent organic frameworks (Cu/COFs) as models to modulate excitonic effects.

View Article and Find Full Text PDF

Infinite Organic Solid-Solution Semiconductors with Continuous Evolution in Film Morphology, Crystalline Lattice and Electrical Properties.

Small

January 2025

Key Laboratory of Automobile Materials of Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China.

Constructing a solid solution is an effective strategy for regulating the properties of composite organic semiconductors. However, there presents significant challenges in fabrication and understanding of organic solid-solution semiconductors. In this study, infinite solid-solution semiconductors are successfully achieved by integrating rod-like organic molecules, thereby overcoming the limitations of current organic composite semiconductors.

View Article and Find Full Text PDF

Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (CAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4-18.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!