Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.46.3535DOI Listing

Publication Analysis

Top Keywords

finite-size-scaling analysis
4
analysis simulation
4
simulation 4he
4
4he superfluid
4
superfluid transition
4
finite-size-scaling
1
simulation
1
4he
1
superfluid
1
transition
1

Similar Publications

This research presents an explicit analysis of the effects of sintering temperature (T) on the structural, morphological, magnetic, and optical properties of CuMgFeO nanoferrites synthesized via the sol-gel method. To accomplish it, Cu-Mg ferrite NPs were sintered at temperatures ranging from 300 to 800 °C in increments of 100 with a constant holding duration of 5 h. Thermogravimetric analysis was used to observe the degradation of organic components and the thermally stable zone of the material.

View Article and Find Full Text PDF

We investigate the dynamical phases and phase transitions arising in a classical two-dimensional anisotropic XY model under the influence of a periodically driven temporal external magnetic field in the form of a symmetric square wave. We use a combination of finite temperature classical Monte Carlo simulation, implemented within a CPU+GPU paradigm, utilizing local dynamics provided by the Glauber algorithm and a phenomenological equation-of-motion approach based on relaxational dynamics governed by the time-dependent free energy within a mean-field approximation to study the model. We investigate several parameter regimes of the variables (magnetic field, anisotropy, and the external drive frequency) that influence the anisotropic XY system.

View Article and Find Full Text PDF

Partition Function Zeros of the Frustrated - Ising Model on the Honeycomb Lattice.

Entropy (Basel)

October 2024

Institut für Theoretische Physik, Leipzig University, IPF 231101, 04081 Leipzig, Germany.

We study the zeros of the partition function in the complex temperature plane (Fisher zeros) and in the complex external field plane (Lee-Yang zeros) of a frustrated Ising model with competing nearest-neighbor (J1>0) and next-nearest-neighbor (J2<0) interactions on the honeycomb lattice. We consider the finite-size scaling (FSS) of the leading Fisher and Lee-Yang zeros as determined from a cumulant method and compare it to a traditional scaling analysis based on the logarithmic derivative of the magnetization ∂ln⟨|M|⟩/∂β and the magnetic susceptibility χ. While for this model both FSS approaches are subject to strong corrections to scaling induced by the frustration, their behavior is rather different, in particular as the ratio R=J2/J1 is varied.

View Article and Find Full Text PDF

Pseudogap Effects in the Strongly Correlated Regime of the Two-Dimensional Fermi Gas.

Phys Rev Lett

October 2024

Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520, USA.

The two-species Fermi gas with attractive short-range interactions in two spatial dimensions provides a paradigmatic system for the understanding of strongly correlated Fermi superfluids in two dimensions. It is known to exhibit a BEC to BCS crossover as a function of ln(k_{F}a), where a is the scattering length, and to undergo a Berezinskii-Kosterlitz-Thouless superfluid transition below a critical temperature T_{c}. However, the extent of a pseudogap regime in the strongly correlated regime of ln(k_{F}a)∼1, in which pairing correlations persist above T_{c}, remains largely unexplored with controlled theoretical methods.

View Article and Find Full Text PDF

Sparsity-Independent Lyapunov Exponent in the Sachdev-Ye-Kitaev Model.

Phys Rev Lett

August 2024

Center for Nuclear Theory and Department of Physics Astronomy, Stony Brook University, Stony Brook, New York 11794, USA.

The saturation of a recently proposed universal bound on the Lyapunov exponent has been conjectured to signal the existence of a gravity dual. This saturation occurs in the low-temperature limit of the dense Sachdev-Ye-Kitaev (SYK) model, N Majorana fermions with q body (q>2) infinite-range interactions. We calculate certain out-of-time-order correlators (OTOCs) for N≤64 fermions for a highly sparse SYK model and find no significant dependence of the Lyapunov exponent on sparsity up to near the percolation limit where the Hamiltonian breaks up into blocks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!