Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.46.11141DOI Listing

Publication Analysis

Top Keywords

high-temperature series
4
series rpn-1
4
rpn-1 lattice
4
lattice spin
4
spin model
4
model generalized
4
generalized maier-saupe
4
maier-saupe model
4
model nematic
4
nematic liquid
4

Similar Publications

New insights in the low-temperature-dependent formation of amorphous titania-coated magnetic polydopamine nanocomposites for the adsorption of methylene blue.

Sci Rep

January 2025

Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guian, 550025, China.

Removal of accumulated dyes from the environment water bodies is essential to prevent further harm to humans. The development and design of new alternative nanoadsorbents that can conveniently, quickly, and efficiently improve the adsorption and removal efficiency of dyes from wastewater remains a huge challenge. An amorphous TiO with a magnetic core-shell-shell structure (FeO@PDA@a-TiO, denoted as FPaT) was constructed through a series of steps.

View Article and Find Full Text PDF

Room-temperature sodium-sulfur (RT Na-S) batteries that typically feature multielectron conversion chemistries can allow an ultrahigh specific capacity of 1675 mA h g and a high energy density of 1275 W h kg but unfortunately suffer from a lot of intractable challenges from sulfur cathodes. These issues cover the poor electronic conductivity of pristine sulfur and solid products, the severe shuttle effect of polysulfides, and the sluggish redox kinetics, The shuttling behavior of polysulfides always leads to cathode/anode instability and performance degeneration. Recently, the emerging catalysis strategy has been demonstrated as a reliable pathway to tackle the central issues caused by sulfur electrochemistry and revitalize RT Na-S batteries.

View Article and Find Full Text PDF

The cellular characteristics of the opportunistic fungal pathogen Cryptococcus species were investigated in the infected liver of an immunocompetent host using transmission electron microscopy (TEM). With no records of immunodeficiency, the 3-year-old female patient displayed a high-grade fever, lethargy, and increasing jaundice. TEM analysis revealed the presence of round yeast cells in the patient's liver.

View Article and Find Full Text PDF

Laterally Excited Resonators Based on Single-Crystalline LiTaO Thin Film for High-Frequency Applications.

Micromachines (Basel)

November 2024

School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China.

High-performance acoustic resonators based on single-crystalline piezoelectric thin films have great potential in wireless communication applications. This paper presents the modeling, fabrication, and characterization of laterally excited bulk resonators (XBARs) utilizing the suspended ultra-thin (~420 nm) LiTaO (LT, with 42° YX-cut) film. The finite element analysis (FEA) was performed to model the LT-based XBARs precisely and to gain further insight into the physical behaviors of the acoustic waves and the loss mechanisms.

View Article and Find Full Text PDF

Fabrication of Polyurethane-Polyacrylate Hybrid Latexes with High Organosilicon Content via Phase Inversion Emulsion Polymerization.

Molecules

December 2024

Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Waterborne polyurethane, with a mechanical strength comparable to solvent-based types, is eco-friendly and safe, using water as a dispersion medium. Polyacrylate excels in film formation and weather resistance but suffers from "hot stickiness and cold brittleness". Merging polyurethane and polyacrylate creates advanced hybrids, while organosilicon enhances properties but is restricted due to hydrolytic crosslinking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!