Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.46.7927 | DOI Listing |
Nat Mater
January 2025
Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
Supercooled liquids display sluggish dynamics, often attributed to their structural characteristics, yet the underlying mechanism remains elusive. Here we conduct numerical investigations into the structure-dynamics relationship in model glass-forming liquids, with a specific focus on an elementary particle rearrangement mode known as the 'T1 process'. We discover that the ability of a T1 process to preserve glassy structural order before and after is pivotal towards determining a liquid's fragility-whether it exhibits super-Arrhenius-like or Arrhenius-like behaviour.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
Shells of Pd and Pt were synthesized on Au nanoparticles by electrodeposition, leading to controllable size and optical properties. This approach yielded core-shell structures with good homogeneity in size after the optimization of electrochemical parameters such as deposition current and charge transfer, as well as nanoparticle surface treatment. Dark field scattering microscopy and spectroscopy were used to track changes in the optical response of individual particles during deposition.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China.
Owing to its high sensitivity, surface-enhanced Raman scattering (SERS) has immense potential for the identification of lung cancer from the variation in volatile biomarkers in the exhaled gas. However, two prevailing factors limit the application of SERS: 1) the adsorption of target molecules into SERS hotspots and 2) the detection specificity in multiple interference environments. To improve the density of the SERS hotspots, 3D Au@Ag-Au particles are prepared in a porous nanoframes (PPFs) based plasmonic structure, which facilitated a richer local electromagnetic field distribution among the Au nanocubic (NC) cores, Au-Ag porous nanoframes, and Au nanoparticles, thereby promoting the adsorption probability of gaseous aldehydes into the hotspots.
View Article and Find Full Text PDFFront Microbiol
December 2024
Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONI-CET-UNT, Tucumán, Argentina.
Introduction: The development of a hepatitis E virus (HEV) vaccine is critical, with ORF2 capsid protein as the main target. We previously demonstrated that oral coadministration of recombinant ORF2 with immunomodulatory bacterium-like-particles (IBLP) induces a specific immune response in mice, particularly using IBLP derived from IBL027 (IBLP027), which was effective in eliciting a local humoral response. IBLP are non-live bacteria with adjuvant and carrier properties, serving as a platform for exposing proteins or antigens fused to LysM (lysine motif) domains, protein modules that bind to cell wall polysaccharides like peptidoglycan.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, China.
Advancements in cryo-electron tomography (cryoET) allow the structure of macromolecules to be determined in situ, which is crucial for studying membrane protein structures and their interactions in the cellular environment. However, membranes are often highly curved and have a strong contrast in cryoET tomograms, which masks the signals from membrane proteins. These factors pose difficulties in observing and revealing the structures of membrane proteins in situ.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!