Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.46.6586DOI Listing

Publication Analysis

Top Keywords

intercalant vibrations
4
vibrations stage-1
4
stage-1 alcl3
4
alcl3 graphite
4
intercalant
1
stage-1
1
alcl3
1
graphite
1

Similar Publications

2,4-Dichlorophenoxyacetic Acid in the Gas and Crystal Phases and Its Intercalation in Montmorillonite-An Experimental and Theoretical Study.

Molecules

January 2025

Instituto Andaluz de Ciencias de la Tierra (IACT-CSIC), Consejo Superior de Investigaciones Científicas, Av. de las Palmeras 4, 18100 Armilla, Granada, Spain.

Many properties of 2,4-dichlorophenoxyacetic acid (2,4-D) depend on its molecular environment, such as whether it is an isolated molecule, a dimer, or in a crystalline state. The molecular geometry, conformational analysis, and vibrational spectrum of 2,4-D were theoretically calculated using Density Functional Theory (DFT) methods. A new slightly more stable conformer was found, which is different to those previously reported.

View Article and Find Full Text PDF

Unraveling the role of Ta in the phase transition of Pb(TaSe) using temperature-dependent Raman spectroscopy.

J Colloid Interface Sci

January 2025

Shanghai Key Laboratory of High Temperature Superconductors, Institute for Quantum Science and Technology, Department of Physics, Shanghai University, Shanghai 200444, China. Electronic address:

Phase engineering strategies in two-dimensional transition metal dichalcogenides (2D-TMDs) have garnered significant attention due to their potential applications in electronics, optoelectronics, and energy storage. Various methods, including direct synthesis, pressure control, and chemical doping, have been employed to manipulate structural transitions in 2D-TMDs. Metal intercalation emerges as an effective technique to modulate phase transition dynamics by inserting external atoms or ions between the layers of 2D-TMDs, altering their electronic structure and physical properties.

View Article and Find Full Text PDF

This manuscript describes the successful synthesis of FeO nanoparticles coated with β-cyclodextrin-intercalated layered double hydroxide, which were utilized to remove Uranium (VI) from an aqueous solution effectively. The newly developed nano-adsorbent underwent thorough analysis through advanced techniques such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), and energy-dispersive X-ray analysis (EDX). Through the utilization of a one-variable-at-a-time strategy, we effectively enhanced the removal process by optimizing key factors such as the sample's pH and the amount of adsorbent utilized.

View Article and Find Full Text PDF

Nanographenes and polycyclic aromatic hydrocarbons, both finite forms of graphene, are promising organic semiconducting materials because their optoelectronic and magnetic properties can be modulated through precise control of their molecular peripheries. Several atomically precise edge structures have been prepared by bottom-up synthesis; however, no systematic elucidation of these edge topologies at the molecular level has been reported. Herein, we describe rationally designed modular syntheses of isomeric dibenzoixenes with diverse molecular peripheries, including cove, zigzag, bay, fjord, and gulf structured.

View Article and Find Full Text PDF

Mitigating Mechanical Stress by the Hierarchical Crystalline Domain for High-Energy P2/O3 Biphasic Cathode Materials.

ACS Nano

November 2024

Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an ,Shaanxi 710049, P.R. China.

Article Synopsis
  • Sodium-ion batteries (SIBs) are gaining popularity for large-scale energy storage due to the affordability and availability of sodium resources, but achieving high energy density and stable performance remains difficult.
  • A new hierarchical structure in the cathode material NaLiMgNiFeMnTiO features a protective P2 crystalline shell around a bulk O3 phase, which helps prevent damage during battery charge and discharge cycles.
  • This innovative design results in impressive electrochemical performance, with an energy density of 506 Wh/kg and a retention rate of 85.5% over 200 cycles, emphasizing the significance of optimizing crystalline structures for enhanced battery durability.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!