Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physrevb.46.390 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
Optical vortices possess a helical phase wavefront with central phase dislocation and orbital angular momentum. We demonstrated three-dimensional microstructure formation using a femtosecond optical vortex beam. Two-photon polymerization of photocurable resin was induced by long-term exposure, resulting in the fabrication of cylindrical structures.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Molecular Physical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland.
The rovibrational energy-level structures of BaH and BaD in their XΣ electronic ground state have been characterised by pulsed-field-ionisation zero-kinetic-energy photoelectron spectroscopy following resonance-enhanced (1 + 1') two-photon excitation from the BaH/BaD X Σ ground state the E Π (' = 0, 1) intermediate levels. A full set of rovibrational molecular constants for the BaH and BaD ground states has been derived for the first time and the adiabatic ionisation energies of BaH and BaD were determined to be 38 679.96(20) and 38 652.
View Article and Find Full Text PDFPhys Rev Lett
September 2024
Departamento de Química, Módulo 13, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain.
Photoionization is one of the most fundamental processes in light-matter interaction. Advanced attosecond photoelectron spectroscopy provides the possibility to characterize the ultrafast photoemission process in an extremely short attosecond time scale. Following scattering symmetry rules, residual ions encode ultrafast photoionization prints at the instant of electron removal forming an alternative electron emission chronoscope.
View Article and Find Full Text PDFPhys Rev Lett
May 2024
School of Mathematics and Physics, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom.
We present a quantum sensing scheme achieving the ultimate quantum sensitivity in the estimation of the transverse displacement between two photons interfering at a balanced beam splitter, based on transverse-momentum sampling measurements at the output. This scheme can possibly lead to enhanced high-precision nanoscopic techniques, such as superresolved single-molecule localization microscopy with quantum dots, by circumventing the requirements in standard direct imaging of camera resolution at the diffraction limit, and of highly magnifying objectives. Interestingly, we show that our interferometric technique achieves the ultimate spatial precision in nature irrespectively of the overlap of the two displaced photonic wave packets, while its precision is only reduced of a constant factor for photons differing in any nonspatial degrees of freedom.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!