Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.45.3600DOI Listing

Publication Analysis

Top Keywords

fermi-level pinning
4
pinning ideally
4
ideally terminated
4
terminated inp110
4
inp110 surfaces
4
fermi-level
1
ideally
1
terminated
1
inp110
1
surfaces
1

Similar Publications

Van der Waals (vdW) contact has been widely regarded as one of the most potential strategies for exploiting low-resistance metal-semiconductor junctions (MSJs) based on atomically thin transition-metal dichalcogenides (TMDs), but this method is still not efficient due to weak metal-TMD interfacial interactions. Therefore, an understanding of interfacial interactions between metals and TMDs is essential for achieving low-resistance contacts with weak Fermi level pinning (FLP). Herein, we report how the interfacial interactions between metals and TMDs affect the electrical contacts by considering more than 90 MSJs consisting of a semiconducting TMD channel and different types of metal electrodes, including bulk metals, MXenes, and metallic TMDs.

View Article and Find Full Text PDF

For weakly interacting adsorbate/substrate systems, the integer charge transfer (ICT) model describes how charge transfer across interfaces depends on the substrate work function. In particular, work function regimes where no charge transfer occurs (vacuum level alignment) can be distinguished from regions where integer charge transfer by electron tunneling from substrate to adsorbate or vice versa takes place (Fermi level pinning). While the formation of singly integer charged molecular anions and cations of organic semiconductors on various substrates has been well described by this model, the double integer charging regime has so far remained unexplored and experimentally elusive.

View Article and Find Full Text PDF

2D metallic transition metal dichalcogenides: promising contact metals for 2D GaN-based (opto)electronic devices.

Phys Chem Chem Phys

January 2025

Jiangxi Provincial Key Laboratory of Advanced Electronic Materials and Devices, Jiangxi Science & Technology Normal University, Nanchang 330018, China.

Owing to their high light absorption coefficient, excellent electronic mobility, and enhanced excitonic effect, two-dimensional (2D) GaN materials hold great potential for applications in optoelectronic and electronic devices. As the metal-semiconductor junction (MSJ) is a fundamental component of semiconductor-based devices, identifying a suitable metal for contacting semiconductors is essential. In this work, detailed first-principles calculations were performed to investigate the contact behavior between the GaN monolayer (ML) and a series of 2D metals MX (M = Nb, Ta, V, Mo, or W; X = S or Se).

View Article and Find Full Text PDF

Dipole-induced transitions from Schottky to Ohmic contact at Janus MoSiGeN/metal interfaces.

Nanoscale Horiz

January 2025

SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China.

Janus MoSiGeN monolayers exhibit exceptional mechanical stability and high electron mobility, which make them a promising channel candidate for field-effect transistors (FETs). However, the high Schottky barrier at the contact interface would limit the carrier injection efficiency and degrade device performance. Herein, using density functional theory calculations and machine learning methods, we investigated the interfacial properties of the Janus MoSiGeN monolayer and metal electrode contacts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!