Download full-text PDF

Source
http://dx.doi.org/10.1103/physrevb.45.8150DOI Listing

Publication Analysis

Top Keywords

charge-spin separation
4
separation ground-state
4
ground-state wave
4
wave function
4
function one-dimensional
4
one-dimensional t-j
4
t-j model
4
charge-spin
1
ground-state
1
wave
1

Similar Publications

High-precision molecular manipulation techniques are used to control the distance between radical molecules on superconductors. Our results show that the molecules can host single electrons with a spin 1/2. By changing the distance between tip and sample, a quantum phase transition from the singlet to doublet ground state can be induced.

View Article and Find Full Text PDF

Copper oxide superconductors universally exhibit multiple forms of electronically ordered phases that break the native translational symmetry of the CuO planes. In underdoped cuprates with correlated metallic ground states, charge/spin stripes and incommensurate charge density waves (CDWs) have been experimentally observed over the years, while early theoretical studies also predicted the emergence of a Coulomb-frustrated 'charge crystal' phase in the very lightly doped, insulating limit of CuO planes. Here, we search for signatures of CDW order in very lightly hole-doped cuprates from the 123 family BaCuO (BCO; : Y or rare earth), by using resonant X-ray scattering, electron transport, and muon spin rotation measurements to resolve the electronic and magnetic ground states fully.

View Article and Find Full Text PDF

Fully aromatic helicenes are attractive building blocks for the construction of inherently chiral π-conjugated macrocyclic nanocarbons. These hitherto rare molecular architectures are envisaged to exhibit remarkable (chir)optical properties, self-assembly, charge/spin transport, induced ring current or a fascinating Möbius topology. Here the synthesis of helically chiral macrocycles that combine angular dibenzo[5]helicene units as corners and linear -stilbene-4,4'-diyl linkers as edges is reported.

View Article and Find Full Text PDF

High Entropy Approach to Engineer Strongly Correlated Functionalities in Manganites.

Adv Mater

January 2023

Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.

Technologically relevant strongly correlated phenomena such as colossal magnetoresistance (CMR) and metal-insulator transitions (MIT) exhibited by perovskite manganites are driven and enhanced by the coexistence of multiple competing magneto-electronic phases. Such magneto-electronic inhomogeneity is governed by the intrinsic lattice-charge-spin-orbital correlations, which, in turn, are conventionally tailored in manganites via chemical substitution, charge doping, or strain engineering. Alternately, the recently discovered high entropy oxides (HEOs), owing to the presence of multiple-principal cations on a given sub-lattice, exhibit indications of an inherent magneto-electronic phase separation encapsulated in a single crystallographic phase.

View Article and Find Full Text PDF

Perturbative Quantum Simulation.

Phys Rev Lett

September 2022

Center on Frontiers of Computing Studies, Peking University, Beijing 100871, China.

Approximation based on perturbation theory is the foundation for most of the quantitative predictions of quantum mechanics, whether in quantum many-body physics, chemistry, quantum field theory, or other domains. Quantum computing provides an alternative to the perturbation paradigm, yet state-of-the-art quantum processors with tens of noisy qubits are of limited practical utility. Here, we introduce perturbative quantum simulation, which combines the complementary strengths of the two approaches, enabling the solution of large practical quantum problems using limited noisy intermediate-scale quantum hardware.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!