Introgressive hybridization is the main method of broadening the genetic diversity of bread wheat. Wild barley Hordeum marinum ssp. gussoneanum Hudson (2n = 4x = 28) has useful agronomical traits, such as high resistance to stress factors, that could be a potential source of new genes for bread wheat improvement.
View Article and Find Full Text PDFVavilovskii Zhurnal Genet Selektsii
March 2021
About one-third of the world's barley crop is used for malt production to meet the needs of the brewing industry. In this regard, the study of the genetic basis of malting quality traits and the breeding of malting barley varieties that are adaptive to their growing conditions are relevant throughout the world, particularly in the Russian Federation, where the cultivation and use of foreign malting varieties of barley prevails. The main parameters of malting quality (artificially germinated and dried barley grains) are malt extract, diastatic power, Kolbach index, viscosity, grain protein, wort β-glucan, free amino nitrogen, and soluble protein content.
View Article and Find Full Text PDFThe genetic mechanisms of fertility restoration in alloplasmic bread wheat with the barley cytoplasm are poorly explored. The effect of the 1BS chromosome arm on the fertility of bread wheat with the cytoplasm was studied depending on the incompleteness/completeness of the cytonuclear compatibility. (i) Three self-fertile (SF) lines and one partially fertile (PF) line with an incomplete cytonuclear compatibility and (ii) four self-fertile (SF) lines with a complete cytonuclear compatibility were studied.
View Article and Find Full Text PDFOne of the limitations in obtaining the genetic diversity of doubled haploid (DH) lines via anther culture is the development of families of regenerants, and each family represents a clone. This work examines the results of studying this phenomenon in anther culture of alloplasmic ()- and euplasmic lines with 1RS.1BL and 7DL-7Ai translocations and hybrids between them.
View Article and Find Full Text PDFWith the use of allele-specific primers developed for the VRN1 loci, the allelic diversity of the VRN-A1, VRN-B1, and VRN-D1 genes was studied in 148 spring common wheat cultivars cultivated under the conditions of Western Siberia. It was demonstrated that modern Western Siberian cultivars have the VRN-A1a allele, which is widely distributed in the world (alone or in combination with the VRN-B1a and VRN-B1c alleles). It was established that the main contribution in acceleration of the.
View Article and Find Full Text PDF