Bilirubin, a yellow bile pigment, plays an important role in the body, being a potent antioxidant and having anti-inflammatory, immunomodulatory, cytoprotective, and neuroprotective functions. This makes bilirubin promising as a therapeutic and diagnostic agent in biomedicine. However, excess bilirubin is toxic and should be removed from the body.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2024
Trimethine cyanine dyes are widely used as probes for the detection, study and quantification of biomolecules. In particular, cationic trimethine cyanines noncovalently interact with DNA with growing fluorescence. However, their use is often limited by the tendency to self-association - to the formation of aggregates.
View Article and Find Full Text PDFIn search of new probes for biomolecules, the spectral fluorescent study of four monomethine cyanine dyes (MCD), both unsymmetrical and symmetrical, has been carried out in different organic solvents, in aqueous buffer solutions, and in the presence of DNA and HSA. The complexation of MCD with biomacromolecules leads to a steep growth of the fluorescence intensity. Complexes of MCD with dsDNA and HSA of various types were modeled in silico by molecular docking.
View Article and Find Full Text PDFThe use of conventional contrast media for diagnostic purposes (in particular, Gd-containing and iodinated agents) causes a large number of complications, the most common of which is contrast-induced nephropathy. It has been shown that after exposure to contrast agents, oxidative stress often occurs in patients, especially in people suffering from various diseases. Antioxidants in the human body can diminish the pathological consequences of the use of contrast media by suppressing oxidative stress.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2022
Spectrochim Acta A Mol Biomol Spectrosc
December 2021
Spectral-fluorescent and photochemical properties (photoisomerization and generation of the triplet state) of meso-substituted cationic carbocyanine dyes, 3,3'-di-(β-hydroxyethyl)-5,5'-dimethoxy-9-ethylthiacarbocyanine iodide (K1) and 3,3'-di-(β-hydroxyethyl)-9-methylthiacarbocyanine iodide (K2), have been studied in solutions and in the presence of DNA. In solutions, on passing from acetonitrile to dioxane, a growth of fluorescence of the dyes is observed due to a shift of the equilibrium of cis/trans isomers toward the fluorescent trans-isomer. Upon flash photolysis of dye solutions in dioxane, the formation and subsequent decay of the cis-photoisomers of the dyes are observed.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
June 2019
Spectral-fluorescent properties of polymethine dye probes anionic 3,3'-di(sulfopropyl)-4,5,4',5'-dibenzo-9-ethylthiacarbocyanine-betaine (DEC) and cationic 3,3',9-trimethylthiacarbocyanine iodide (Cyan 2) in the presence of biological surfactants, bile salts sodium cholate (NaC), sodium deoxycholate (NaDC) and sodium taurocholate (NaTC), as well as sodium dodecyl sulfate (SDS), have been studied in a wide range of surfactant concentrations. When a surfactant is introduced into a solution of DEC, changes of the spectral-fluorescent properties are observed due to decomposition of dye dimers into cis-monomers and cis-trans conversion of the resulting monomers. In the presence of SDS, both processes occur in parallel, caused by noncovalent interaction of dye monomers with micelles, and mainly occur near the critical micelle concentration (CMC).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2018
The presence of carotenoids in the vitreous body, retina, lens, retinal pigment epithelium together with choroid (hereinafter RPE), and ciliary body and iris together with choroidal stroma (hereinafter CBI) was studied throughout the second trimester of prenatal development of the human eye. It has been found that the vitreous body, retina, and RPE contain lutein and its oxidized forms. Zeaxanthin was not found in the tissues studied.
View Article and Find Full Text PDFA novel biphotochromic compound (BPC) with two photochromic fragments, namely spironaphthopyran and hydroxyazomethine, was synthesized and studied by nanosecond laser flash photolysis using the excitation wavelengths of 337, 430, 470 and 500 nm in methanol and toluene. The photoexcitation of BPC results in the formation of at least two colored transients. The first one is the merocyanine form B (the maximum in the absorption spectrum is near 600 nm and the lifetime is 0.
View Article and Find Full Text PDFThe electronic structure, spectra and linear and second-order polarizabilities of two symmetric ketocyanines, which are prototypic examples of D-A-D chromophores, have been investigated with two different toolsets: (i) the so-called 'essential-state model', here comprising three states, the ground and two lowest excited (1)ππ* states, has been adapted for these non-centrosymmetric, yet symmetric compounds to determine their permanent electric dipole moments, polarizabilities and first hyperpolarizabilities making use of experimental transition energies and moments; (ii) extensive TDDFT calculations have provided ground-state conformational results consistent with NMR-derived structural information, energies and dipole moments of up to 20 lowest-lying electronic states as well as, within the sum-over-states (SOS) scheme, the most relevant components of the polarizabilities and first hyperpolarizabilities. The two levels of description form consistent pictures of the ketocyanine excited states that provide the most relevant contributions to hyperpolarizabilities: extension of the SOS set beyond the three states of the basic model left unchanged (within ∼10%) the calculated vector component of the second-order polarizability tensor along the direction of the ground-state dipole moment (β(y)). Both approaches indicate that these D-A-D compounds, in spite of their quasi-linear structure, reminiscent of that of centrosymmetric quadrupolar chromophores, feature significant second-order molecular polarizabilities.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
December 2008
This study aimed to analyze the aqueous humor (AH) and the vitreous body (VB) of the eye of the adult frog Rana temporaria L. as a representative species of amphibians, which lead a semi-terrestrial life. The presence of collagen, albumin, uric acid and electron donors was shown in both media; however, there are slight differences in their concentrations.
View Article and Find Full Text PDFThe aim of this work was to develop a quick method for analysis of macromolecules of the extracellular matrix. Of great interest are soluble components of the extracellular matrix, in particular, carrier proteins, whose variation dynamics can characterize the studied tissue in its development, adult stage, and aging. We suggest the method of analysis of the extracellular matrix to reveal the presence of albumin and collagen by using an anionic cyanine dye as a spectral and fluorescence probe.
View Article and Find Full Text PDFElectronic excitation energy transfer (EET) between molecules of polymethine dyes bound to human serum albumin (HSA) has been established and studied by absorption and fluorescence spectroscopy as well as by fluorescence decay measurements. In this system, excitation of the donor dye molecule leads to fluorescence of the acceptor dye molecule, both bound to HSA, with donor fluorescence quenching by the acceptor. The short distance between the donor and the acceptor (25-28 A) revealed from the Forster model of EET as well as some spectroscopic data show that both molecules are probably located in the same binding domain of HSA.
View Article and Find Full Text PDFNon-covalent interactions between polymethine dyes of various types (cationic and anionic thiacarbocyanines as well as anionic oxonols and tetracyanopolymethines) and human serum albumin (HSA) were studied by means of absorption, fluorescence and circular dichroism (CD) spectroscopies. Complexation with the protein leads to a red shift of the dye absorption spectra and, in most cases, to a growth of the fluorescence quantum yield (Phif; for oxonols this growth is very small). The binding constants (K) obtained from changing the absorption spectra and Phif vary from 10(4) to (5-6) x 10(7) M(-1).
View Article and Find Full Text PDFPhotochem Photobiol Sci
March 2002
The photophysical and photochemical properties of the negatively charged hydrophilic cyanine dyes 1-3 were studied in isooctane/sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/water and cyclohexane-hexanol/Triton X-100 (TX100)/water reverse micelles and in aqueous solutions in the presence of surfactants. In spite of the opposite total charges, 2 and its structural analog, cationic 3,3'-diethylthiacarbocyanine (DTC), show similar photophysical and photochemical behaviour in AOT reverse micelles. However, in normal micelles their photophysical properties are quite different: 2 exhibits unusual behaviour [a sharp increase in the fluorescence quantum yield (phif) in the presence of both cationic and anionic micelles, but very small changes with neutral TX100], whereas the behaviour of DTC is normal.
View Article and Find Full Text PDF