Publications by authors named "alexander Petrov"

Photonic crystals (PhCs) are optical structures characterized by the spatial modulation of the dielectric function, which results in the formation of a photonic band gap (PBG) in the frequency spectrum. This PBG blocks the propagation of light, enabling filtering, confinement, and manipulation of light. Most of the research in this field has concentrated on static PhCs, which have fixed structural and material parameters, leading to a constant PBG.

View Article and Find Full Text PDF

The methylation of cytosines at CpG sites in DNA, carried out de novo by DNA methyltransferase Dnmt3a, is a basic epigenetic modification involved in gene regulation and genome stability. Aberrant CpG methylation in gene promoters leads to oncogenesis. In oncogene promoters, CpG sites often colocalize with guanine-rich sequences capable of folding into G-quadruplexes (G4s).

View Article and Find Full Text PDF

The long-term operation of refractory-metal-based metamaterials is crucial for applications such as thermophotovoltaics. The metamaterials based on refractory metals like W, Mo, Ta, Nb, and Re fail primarily by oxidation. Here, the use of the noble metal Ir is proposed, which is stable to oxidation and has optical properties comparable to gold.

View Article and Find Full Text PDF

Scolytus unicornis, a new species of Scolytus Geoffroy from Yunnan, China, is described and illustrated. Three DNA barcoding sequences (COI, 28S, CAD) of this species are provided. The new species is distinguished from other Asian Scolytus species by the longitudinal wrinkles on the frons only in the area below the eyes, a large median spine situated in the middle of the ventrite 2 base, and female frons with a slightly raised blunt tubercle above the epistoma.

View Article and Find Full Text PDF

Conical intersections are crossing points or lines between two or more adiabatic electronic potential energy surfaces in the multidimensional coordinate space of colliding atoms and molecules. Conical intersections and corresponding nonadiabatic coupling can greatly affect molecular dynamics and chemical properties. In this paper, we predict significant or measurable nonadiabatic effects in an ultracold atom-ion charge-exchange reaction in the presence of laser-induced conical intersections (LICIs).

View Article and Find Full Text PDF

One new species of Neotropical Premnobius Eichhoff is described: P. brownei Atkinson & Flechtmann from Brazil. The presence of the related genus Premnophilus Browne is confirmed from South America and six new species are described: P.

View Article and Find Full Text PDF

Our research purpose was to study the effect of the inclusion of a combination of phytobiotics in the form of dry grits (FG) and a mineral adsorbent from the heat-treated mineral shungite (TMS) on milk productivity, nutrient digestibility, and biochemical parameters of the Suksun dairy cows. A total of 80 dry-hardy cows of the Suksun breed were divided into four groups (20 heads each), balanced primarily by breed, age, body weight, body condition score, and indicators of milk yield for the previous lactation. The selected cows were with an average live body weight of 512.

View Article and Find Full Text PDF

This paper presents the first results of a study of the LH transition on the new spherical Globus-M2 tokamak using the Doppler backscattering (DBS) diagnostic. New data characterizing the H-mode of discharges with higher values of the plasma parameters, such as magnetic field B up to 0.9 T and plasma current I up to 450 kA, were collected and analyzed.

View Article and Find Full Text PDF

Quantitative prediction of physical properties of liquids and equilibrium constants is important for many applications. Computational methods based on either explicit or implicit solvent models can be used to approximate thermodynamics of complexation. A practical method for calculating the stability constant of d chlorocomplexes (PdCl, PtCl, AuCl) in aqueous solution has been developed by using DFT and DLPNO-CCSD with the SMD solvation model and 100 unique explicit water molecules.

View Article and Find Full Text PDF

Ytterbium monohydroxide is a promising molecule in the search for new physics. It is well known that levels of opposite parity, separated by energy split, the so-called l-doublets, define the experimental electric field strength required for molecule polarization. In addition, in our previous paper [Phys.

View Article and Find Full Text PDF

Yu, Todd, and Petrov (2021) and Yu, Petrov, and Todd (2021) investigated failures of shape constancy that occur when objects are viewed stereoscopically at different distances. Although this result has been reported previously with simple objects such as pyramids or cylinders, we examined more complex objects with bilateral symmetry to test the claim by Li, Sawada, Shi, Kwon, and Pizlo (2011) that the perception of those objects is veridical. Sawada and Pizlo (2022) offer several criticisms of our experiments, but they seem to suggest that the concept of shape is defined by what is computable by their model.

View Article and Find Full Text PDF

Shape is an interesting property of objects because it is used in ordinary discourse in ways that seem to have little connection to how it is typically defined in mathematics. The present article describes how the concept of shape can be grounded within Euclidean and non-Euclidean geometry and also to human perception. It considers the formal methods that have been proposed for measuring the differences among shapes and how the performance of those methods compares with shape difference thresholds of human observers.

View Article and Find Full Text PDF

The spectrum of triatomic molecules with close rovibrational opposite parity levels is sensitive to the P,T-odd effects. This makes them a convenient platform for the experimental search of a new physics. Among the promising candidates, one may distinguish YbOH as a non-radioactive compound with a heavy atom.

View Article and Find Full Text PDF

A single experiment is reported that measured the apparent stereoscopic shapes of symmetric and asymmetric objects at different viewing distances. The symmetric stimuli were specifically designed to satisfy the minimal conditions for computing veridical shape from symmetry. That is to say, they depicted complex, bilaterally symmetric, plane-faced polyhedra whose symmetry planes were oriented at an angle of 45° relative to the line of sight.

View Article and Find Full Text PDF

Two shape matching experiments examined the effects of viewing distance and object size on observers' judgments of 3D metric shape under binocular viewing. Unlike previous studies on this topic, the stimuli were specifically designed to satisfy the minimal conditions for computing veridical shape from symmetry. Concretely, the stimuli were complex, mirror-symmetric polyhedra whose symmetry planes were oriented at an angle of 45o relative to the line of sight in a shape-matching task.

View Article and Find Full Text PDF

Time-dependent density functional theory (TD-DFT) and spectrophotometric methods were used for speciation analysis in systems disulfides (cystine, cystamine, homocystine, 3,3-dithiodipropionic acid) - [PdCl] or [PtCl]. We use the M06-2X and CAM-B3LYP density functionals with Def2-SVP basis set to reproduce the experimental UV-vis spectra; the polarized continuum solvation model (PCM) was fitted to take into account solvation effects of the medium (water). Used methods have shown the good agrees with the experiment - theoretical values of transition energies differ from real parameters within ±0.

View Article and Find Full Text PDF

TiO thin films deposited by atomic layer deposition (ALD) at low temperatures (<100 °C) are, in general, amorphous and exhibit a smaller refractive index in comparison to their crystalline counterparts. Nonetheless, low-temperature ALD is needed when the substrates or templates are based on polymeric materials, as the deposition has to be performed below their glass transition or melting temperatures. This is the case for photonic crystals generated via ALD infiltration of self-assembled polystyrene templates.

View Article and Find Full Text PDF

To obtain high-quality homogeneous photonic glass-based structural color films over large areas, it is essential to precisely control the degree of disorder of the spherical particles used and reduce the crack density within the films as much as possible. To tailor the disorder and quality of photonic glasses, a heteroaggregation-based process was developed by employing two oppositely charged equal-sized polystyrene (PS) particle types. The influence of the particle size ratio on the extent of heteroaggregation in the suspension mixes is investigated and correlated with both the morphology and the resultant optical properties of the films.

View Article and Find Full Text PDF

In this work, we demonstrate the fundamental relationships between stability constants and periodic, acid-base, and structural parameters for complexes of some 1,3-diketones. The four analogues of hexafluoroacetylacetone-2-thenoyltrifluoroacetone, 2-furoyltrifluoroacetone, benzoyltrifluoroacetone, and 2-naphthyltrifluoroacetone-have been studied as chelating ligands for 16 rare-earth metals (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) in aqueous solutions. Systems have been investigated spectrophotometrically using a multiwave nonlinear least-squares regression algorithm for data processing.

View Article and Find Full Text PDF

The high-temperature stability of thermal emitters is one of the critical properties of thermophotovoltaic (TPV) systems to obtain high radiative power and conversion efficiencies. W and HfO are ideal due to their high melting points and low vapor pressures. At high temperatures and given vacuum conditions, W is prone to oxidation resulting in instantaneous sublimation of volatile W oxides.

View Article and Find Full Text PDF

The non-steady-state photoelectromotive force is excited in a monoclinic gallium oxide crystal at wavelength λ = 457 nm. The crystal grown in an oxygen atmosphere is insulating and highly transparent for a visible light, nevertheless, the formation of dynamic space-charge gratings and observation of the photo-EMF signal is achieved without application of any electric field to the sample. The dependencies of the signal amplitude on the frequency of phase modulation, light intensity, spatial frequency and light polarization are measured.

View Article and Find Full Text PDF

The effect of conical intersections (CIs) on electronic relaxation, transitions from excited states to ground states, is well studied, but their influence on hyperfine quenching in a reactant molecule is not known. Here, we report on ultracold collision dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states. Our quantum-mechanical calculations of this process reveal that quenching is efficient due to anomalous molecular dynamics in the vicinity of the conical intersection at collinear geometry.

View Article and Find Full Text PDF

We present experimental evidence of charge exchange between laser-cooled potassium K atoms and calcium Ca ions in a hybrid atom-ion trap and give quantitative theoretical explanations for the observations. The K atoms and Ca ions are held in a magneto-optical (MOT) and a linear Paul trap, respectively. Fluorescence detection and high resolution time of flight mass spectra for both species are used to determine the remaining number of Ca ions, the increasing number of K ions, and K number density as functions of time.

View Article and Find Full Text PDF

To substitute conventional pigments, which often are toxic or suffer from fading in ultraviolet light, non-iridescent structural colors should demonstrate high spectral selectivity, while being also mechanically stable. However, conventional photonic glass (PhG) shows low color saturation due to the gradual transition in the reflection spectrum and low mechanical stability due to weak interparticle attachment. Here, a PhG with sharp spectral transition in comparison with the conventional full sphere PhG is designed by a conformal coating via atomic layer deposition (ALD) onto an organic PhG template.

View Article and Find Full Text PDF