Publications by authors named "Zytnicki D"

Article Synopsis
  • The study explores how neural circuits in mice adapt during early stages of progressive motoneuron degeneration, which helps maintain normal movement despite cell loss.
  • It finds that, early on, a specific pre-motor circuit's neurotransmission is significantly reduced due to decreased density of glycine receptors, but this impairment is not widespread across all spinal inhibitory circuits.
  • Later stages of the disease show recovery in neurotransmission and increased excitation of motoneurons, indicating that spinal microcircuits undergo specific compensatory changes that help preserve muscle force output.
View Article and Find Full Text PDF

In many neurological conditions, early-stage neural circuit adaption can preserve relatively normal behaviour. In some diseases, spinal motoneurons progressively degenerate yet movement is initially preserved. We therefore investigated whether these neurons and associated microcircuits adapt in a mouse model of progressive motoneuron degeneration.

View Article and Find Full Text PDF

Homeostatic feedback loops are essential to stabilize the activity of neurons and neuronal networks. It has been hypothesized that, in the context of Amyotrophic Lateral Sclerosis (ALS), an excessive gain in feedback loops might hyper- or hypo-excite motoneurons (MNs) and contribute to the pathogenesis. Here, we investigated how the neuromodulation of MN intrinsic properties is homeostatically controlled in presymptomatic adult SOD1(G93A) mice and in the age-matched control WT mice.

View Article and Find Full Text PDF

Spinal alpha-motoneurons are classified in several types depending on the contractile properties of the innervated muscle fibers. This diversity is further displayed in different levels of vulnerability of distinct motor units to neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS). We summarize recent data suggesting that, contrary to the excitotoxicity hypothesis, the most vulnerable motor units are hypoexcitable and experience a reduction in their firing prior to symptoms onset in ALS.

View Article and Find Full Text PDF

Although they share the common function of controlling muscle fiber contraction, spinal motoneurons display a remarkable diversity. Alpha-motoneurons are the "final common pathway", which relay all the information from spinal and supraspinal centers and allow the organism to interact with the outside world by controlling the contraction of muscle fibers in the muscles. On the other hand, gamma-motoneurons are specialized motoneurons that do not generate force and instead specifically innervate muscle fibers inside muscle spindles, which are proprioceptive organs embedded in the muscles.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, which is still missing effective therapeutic strategies. Although manipulation of neuronal excitability has been tested in murine and human ALS models, it is still under debate whether neuronal activity might represent a valid target for efficient therapies. In this study, we exploited a combination of transcriptomics, proteomics, optogenetics and pharmacological approaches to investigate the activity-related pathological features of iPSC-derived C9orf72-mutant motoneurons (MN).

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of largely unknown pathophysiology, characterized by the progressive loss of motoneurons (MNs). We review data showing that in presymptomatic ALS mice, MNs display reduced intrinsic excitability and impaired level of excitatory inputs. The loss of repetitive firing specifically affects the large MNs innervating fast contracting muscle fibers, which are the most vulnerable MNs in ALS.

View Article and Find Full Text PDF

Excessive excitation is hypothesized to cause motoneuron (MN) degeneration in amyotrophic lateral sclerosis (ALS), but actual proof of hyperexcitation in vivo is missing, and trials based on this concept have failed. We demonstrate, by in vivo single-MN electrophysiology, that, contrary to expectations, excitatory responses evoked by sensory and brainstem inputs are reduced in MNs of presymptomatic mutSOD1 mice. This impairment correlates with disrupted postsynaptic clustering of Homer1b, Shank, and AMPAR subunits.

View Article and Find Full Text PDF

The field of motoneuron and motor unit physiology in mammals has deeply evolved the last decade thanks to the parallel development of mouse genetics and transcriptomic analysis and of mouse preparations that allow intracellular electrophysiological recordings of motoneurons. We review the efforts made to investigate the electrophysiological properties of the different functional subtypes of mouse motoneurons, to decipher the mosaic of molecular markers specifically expressed in each subtype, and to elucidate which of those factors drive the identity of motoneurons.

View Article and Find Full Text PDF

Hyperexcitability has been suggested to contribute to motoneuron degeneration in amyotrophic lateral sclerosis (ALS). If this is so, and given that the physiological type of a motor unit determines the relative susceptibility of its motoneuron in ALS, then one would expect the most vulnerable motoneurons to display the strongest hyperexcitability prior to their degeneration, whereas the less vulnerable should display a moderate hyperexcitability, if any. We tested this hypothesis in vivo in two unrelated ALS mouse models by correlating the electrical properties of motoneurons with their physiological types, identified based on their motor unit contractile properties.

View Article and Find Full Text PDF

Spinal motoneurons are endowed with nonlinear spiking behaviors manifested by a spike acceleration whose functional significance remains uncertain. Here, we show in rodent lumbar motoneurons that these nonlinear spiking properties do not rely only on activation of dendritic nifedipine-sensitive L-type Ca channels, as assumed for decades, but also on the slow inactivation of a nifedipine-sensitive K current mediated by Kv1.2 channels that are highly expressed in axon initial segments.

View Article and Find Full Text PDF

Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e.

View Article and Find Full Text PDF

In neonatal mice, fast- and slow-type motoneurons display different patterns of discharge. In response to a long liminal current pulse, the discharge is delayed up to several seconds in fast-type motoneurons and their firing frequency accelerates. In contrast, slow-type motoneurons discharge immediately, and their firing frequency decreases at the beginning of the pulse.

View Article and Find Full Text PDF

The muscle-specific kinase MuSK is one of the key molecules orchestrating neuromuscular junction (NMJ) formation. MuSK interacts with the Wnt morphogens, through its Frizzled-like domain (cysteine-rich domain [CRD]). Dysfunction of MuSK CRD in patients has been recently associated with the onset of myasthenia, common neuromuscular disorders mainly characterized by fatigable muscle weakness.

View Article and Find Full Text PDF

In amyotrophic lateral sclerosis (ALS) the large motoneurons that innervate the fast-contracting muscle fibers (F-type motoneurons) are vulnerable and degenerate in adulthood. In contrast, the small motoneurons that innervate the slow-contracting fibers (S-type motoneurons) are resistant and do not degenerate. Intrinsic hyperexcitability of F-type motoneurons during early postnatal development has long been hypothesized to contribute to neural degeneration in the adult.

View Article and Find Full Text PDF

Spinal motoneurons may display a variety of firing patterns including bistability between repetitive firing and quiescence and, more rarely, bistability between two firing states of different frequencies. It was suggested in the past that firing bistability required that the persistent L-type calcium current be segregated in distal dendrites, far away from the spike generating currents. However, this is not supported by more recent data.

View Article and Find Full Text PDF

In amyotrophic lateral sclerosis (ALS), an adult onset disease in which there is progressive degeneration of motoneurones, it has been suggested that an intrinsic hyperexcitability of motoneurones (i.e. an increase in their firing rates), contributes to excitotoxicity and to disease onset.

View Article and Find Full Text PDF

Since their discovery in the late 19th century our conception of motoneurons has steadily evolved. Motoneurons share the same general function: they drive the contraction of muscle fibers and are the final common pathway, i.e.

View Article and Find Full Text PDF

We explain the mechanism that elicits the mixed mode oscillations (MMOs) and the subprimary firing range that we recently discovered in mouse spinal motoneurons. In this firing regime, high-frequency subthreshold oscillations appear a few millivolts below the spike voltage threshold and precede the firing of a full blown spike. By combining intracellular recordings in vivo (including dynamic clamp experiments) in mouse spinal motoneurons and modeling, we show that the subthreshold oscillations are due to the spike currents and that MMOs appear each time the membrane is in a low excitability state.

View Article and Find Full Text PDF

The fast contraction time of mouse motor units creates a unique situation in which motoneurons have to fire at low frequencies to produce small forces but also at very high frequency (much higher than in cat or rat motoneurons) to reach the fusion frequency of their motor units. To understand how this problem is solved, we performed intracellular recordings of adult mouse spinal motoneurons and investigated systematically their subthreshold properties and their discharge pattern. We show that mouse motoneurons have a much wider range of firing frequencies than cat and rat motoneurons because of three salient features.

View Article and Find Full Text PDF

Why do motoneurons possess two persistent inward currents (PICs), a fast sodium current and a slow calcium current? To answer this question, we replaced the natural PICs with dynamic clamp-imposed artificial PICs at the soma of spinal motoneurons of anesthetized cats. We investigated how PICs with different kinetics (1-100 ms) amplify proprioceptive inputs. We showed that their action depends on the presence or absence of a resonance created by the I(h) current.

View Article and Find Full Text PDF

Does the afterhyperpolarization current control the gain and discharge variability of motoneurones according to the same law? We investigated this issue in lumbar motoneurones of anaesthetized cats. Using dynamic clamp, we measured the conductance, time constant and driving force of the AHP current in a sample of motoneurones and studied how the gain was correlated to these quantities. To study the action of the AHP on the discharge variability and to compare it to its action on the gain, we injected an artificial AHP-like current in motoneurones.

View Article and Find Full Text PDF

We accurately measured the conductance responsible for the afterhyperpolarization (medium AHP) that follows a single spike in spinal motoneurons of anesthetized cats. This was done by using the dynamic-clamp method. We injected an artificial current in the neurons that increased the AHP amplitude, and we made use of the fact that the intensity of the natural AHP current at the trough of the voltage trajectory was related linearly to the AHP amplitude.

View Article and Find Full Text PDF