Int J Environ Res Public Health
December 2021
Cadmium, Cu, Ni, Pb, and Zn removal via soil flushing with tannic acid (TA) as a plant biosurfactant was studied. The soil was treated for 30 h in a column reactor at a constant TA concentration and pH (3%, pH 4) and at variable TA flow rates (0.5 mL/min or 1 mL/min).
View Article and Find Full Text PDFOne of crucial waste management problems is the management of organic waste. This activity employs the composting. In case of green waste, its application seems reasonable, whereas the use of selected mixed waste raises problems related to the compost quality.
View Article and Find Full Text PDFSoil washing effectively and permanently decreases soil pollution. Thus, it can be considered for the removal of the most toxic elements, for example arsenic (As). In this study, historically As-contaminated soils (2041-4294 mg/kg) were remediated with tannic acid (TA) as the washing agent.
View Article and Find Full Text PDFIn contaminated soils, excessive concentrations of metals and their high mobility pose a serious environmental risk. A suitable soil amendment can minimize the negative effect of metals in soil. This study investigated the effect of different biochars on metal (Cu, Pb, Zn) immobilization in industrial soil.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2016
This paper analyses the capacity of the rape (Brassica napus) to extract Cd and Zn from the soil and the effect of these metals on the morphometric parameters of the plant (length, weight, surface area, fractal dimension of leaves). Rape plants were mostly affected by the combined toxicity of the Cd and Zn mixture that caused a significant reduction in the rate of seed germination, the plant biomass quantity and the fractal dimension. In the case of Cd soil pollution, the bioaccumulation factor (BAF), bioaccumulation coefficient (BAC) as well as the heavy metal root-to-stalk translocation factor (TF) were determined.
View Article and Find Full Text PDFEnviron Technol
September 2016
This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions.
View Article and Find Full Text PDFThere is a need for inexpensive, readily-available and environmentally-friendly soil washing agents to remediate polluted soils. Thus, batch washing experiments were performed to evaluate the feasibility of using a solution of humic substances (HS) extracted from compost as a washing agent for simultaneous removal of Cu, Cd, Zn, Pb and Ni from artificially contaminated soils aged for 1 month, 12 months and 24 months. The efficiency of metal removal in single and multiple washings and kinetic constants (equilibrium metal concentration qe and rate constant k from the second-order kinetic equation) were determined.
View Article and Find Full Text PDFAlthough commercially available biosurfactants are environmentally friendly and effectively remove heavy metals from soil, they are costly. Therefore, this study investigated whether inexpensive humic substances (HS) from sewage sludge compost could effectively remove copper (Cu) and cadmium (Cd) from highly contaminated sandy clay loam (S1) and clay (S2). The optimum HS concentration and pH were determined, as well process kinetics.
View Article and Find Full Text PDFPlant biosurfactants were used for the first time to remove As and co-existing metals from brownfield soils. Tannic acid (TA), a polyphenol, and saponin (SAP), a glycoside were tested. The soil washing experiments were performed in batch conditions at constant biosurfactant concentration (3%).
View Article and Find Full Text PDFTo assess the environmental quality of compost, it is insufficient to use only total metal concentration. Therefore in this study, the stability of metals in compost and the environmental risk they pose were assessed by three indices that have been proposed for soils or sediments: the IR, the RAC and the MRI. In mature composts, the highest bonding intensity was for Ni (0.
View Article and Find Full Text PDFThe influence of multiple saponin washing on copper, cadmium and zinc removal and stability in three types of soils (loamy sand, loam, silty clay) was investigated. Distribution of metals and their mobility measured as the ratio of exchangeable form to the sum of all fractions in soils was differential. After single washing the highest efficiency of metal removal was obtained in loamy sand (82-90%) and loam (67-88%), whereas the lowest in silty clay (39-62%).
View Article and Find Full Text PDF