High mortality and reduced growth due to root hypoxia are commonly observed in plants impacted by flooding or soil compaction. Since earlier research suggested that Nicotiana tabacum PIP1;3 may facilitate cell-to-cell oxygen transport, we overexpressed NtPIP1;3 in canola (Brassica napus) and studied the effects on growth, physiological parameters, root oxygen concentrations, and energy metabolism in plants subjected to waterlogging. Compared with wild-type plants (WT), the waterlogged plants overexpressing NtPIP1;3 (OE) maintained higher dry biomass, gas exchange, root hydraulic conductivity, root oxygen concentrations, leaf water potentials, root respiration rates, and root ATP concentrations.
View Article and Find Full Text PDFTo better understand the roles of aquaporins in salt tolerance, we cloned PIP2;1, PIP2;2, PIP2;3, PIP1;1, PIP1;3, and TIP1;1 aquaporins from three northern grasses varying is salt tolerance including the halophytic grass Puccinellia nuttalliana, moderately salt tolerant Poa juncifolia, and relatively salt sensitive Poa pratensis. We analysed aquaporin expression in roots by exposing the plants to 0 and 150 mM for 6 days in hydroponic culture. NaCl treatment upregulated several PIP transcripts in P.
View Article and Find Full Text PDFSince most of the root metabolic activities as well as root elongation and the uptake of water and mineral nutrients take place in the distal parts of roots, we aimed to gain insight into the physiological and transcriptional changes induced by root hypoxia in the distal parts of roots in canola () plants, which are relatively sensitive to flooding conditions. Plants were subject to three days of root hypoxia via lowering oxygen content in hydroponic medium, and various physiological and anatomical features were examined to characterize plant responses. Untargeted transcriptomic profiling approaches were also applied to investigate changes in gene expression that took place in the distal root tissues in response to hypoxia.
View Article and Find Full Text PDFBackground: The permeability of plasma membrane aquaporins (PIPs) to small solutes other than water greatly diversifies their potential functions in plant development and metabolic processes. One such process is stress signalling in which hydrogen peroxide (HO) plays a major role. Based on transport assays carried out in yeast, there are differences in the degree to which PIPs of Arabidopsis thaliana, are permeable to HO and thus they may differentially facilitate transmembrane diffusion.
View Article and Find Full Text PDFIn salt-sensitive plants, root hydraulic conductivity is severely inhibited by NaCl, rapidly leading to the loss of water balance. However, halophytic plants appear to effectively control plant water flow under salinity conditions. In this study, we tested the hypothesis that Na is the principal salt factor responsible for the enhancement of aquaporin-mediated water transport in the roots of halophytic grasses, and this enhancement plays a significant role in the maintenance of water balance, gas exchange, and the growth of halophytic plants exposed to salinity.
View Article and Find Full Text PDFAlthough velvetleaf blueberry () is usually associated with sandy (upland) areas of the North American boreal forest, lowland populations can be also found in bogs, suggesting possible adaptations to different site conditions. In this study, we examined the role of ericoid mycorrhizal (ERM) fungi in conferring drought resistance to the upland and lowland velvetleaf blueberry seedlings. The seedlings were inoculated with four ERM fungi (, , , and ) isolated from the roots of ericaceous plants and grown under controlled environmental conditions in sterilized soil.
View Article and Find Full Text PDFElevated soil salinity exacerbated by human activities and global climate change poses serious threats to plant survival. Although halophytes provide many important clues concerning salt tolerance in plants, some unanswered questions remain to be addressed, including the processes of water and solute transport regulation. We performed high-throughput RNA-sequencing in roots and metabolome characterizations in roots and leaves of halophytic grass subjected to 0 (control) and 150 mM NaCl.
View Article and Find Full Text PDFBackground: Root hypoxia has detrimental effects on physiological processes and growth in most plants. The effects of hypoxia can be partly alleviated by ethylene. However, the tolerance mechanisms contributing to the ethylene-mediated hypoxia tolerance in plants remain poorly understood.
View Article and Find Full Text PDFThe roles of different plasma membrane aquaporins (PIPs) in leaf-level gas exchange of Arabidopsis thaliana were examined using knockout mutants. Since multiple Arabidopsis PIPs are implicated in CO2 transport across cell membranes, we focused on identifying the effects of the knockout mutations on photosynthesis, and whether they are mediated through the control of stomatal conductance of water vapour (gs), mesophyll conductance of CO2 (gm), or both. We grew Arabidopsis plants in low and high humidity environments and found that the contribution of PIPs to gs was larger under low air humidity when the evaporative demand was high, whereas any effect of a lack of PIP function was minimal under higher humidity.
View Article and Find Full Text PDFResponses of trembling aspen (), jack pine (), and white spruce () seedlings to root zone pH ranging from 5 to 9 were studied in sand culture in the presence of two mineral nutrition levels. After eight weeks of treatments, effects of pH on plant dry weights varied between the plant species and were relatively minor in white spruce. Higher nutrient supply significantly increased dry weights only in trembling aspen subjected to pH 5 treatment.
View Article and Find Full Text PDFTo examine the effects of ericoid mycorrhizal (ERM) fungi on salt tolerance of ericaceous plants, we inoculated roots of velvetleaf blueberry (Vaccinium myrtilloides), Labrador tea (Rhododendron groenlandicum), and lingonberry (Vaccinium vitis-idaea) with ericoid mycorrhizal fungi Oidiodendron maius and Meliniomyces variabilis. Plants were subjected to 0 (NaCl control) and 30 mM NaCl treatments, and plant dry weights, gas exchange, and leaf chlorophyll concentrations were compared in inoculated and non-inoculated plants. M.
View Article and Find Full Text PDFEctomycorrhizal fungi influence root water transport of host plants. To delineate the exact mechanisms of how fungal partner alters root water relations, it is important to understand the functions of fungal transmembrane water channels, i.e.
View Article and Find Full Text PDFBitumen recovery from oil sands in northeastern Alberta, Canada produces large volumes of tailings, which are deposited in mining areas that must be reclaimed upon mine closure. A new technology of non-segregated tailings (NST) developed by Canadian Natural Resources Limited (CNRL) was designed to accelerate the process of oil sands fine tailings consolidation. However, effects of these novel tailings on plants used for the reclamation of oil sands mining areas remain to be determined.
View Article and Find Full Text PDFFollowing a stress event, jasmonate-dependent signaling pathway triggers a shift from growth to defense responses that are accompanied by the cessation of growth in many plants. However, the processes leading to this growth inhibition remain obscure. In this study, we provide evidence for a rapid inhibition of cell hydraulic conductivity (L) by methyl jasmonate (MeJA) in the roots of wild-type Arabidopsis within 0.
View Article and Find Full Text PDFWith large forested urban areas, the city of Edmonton, Alberta, Canada, faces high annual costs of replacing trees injured by deicing salts that are commonly used for winter road maintenance. Ectomycorrhizal fungi form symbiotic associations with tree roots that allow trees to tolerate the detrimental effects of polluted soils. Here, we examined mycorrhizal colonization of Pinus contorta by germinating seeds in soils collected from different locations: (1) two urban areas within the city of Edmonton, and (2) an intact pine forest just outside Edmonton.
View Article and Find Full Text PDFFormation of adventitious roots in plants is a common response to hypoxia caused by flooding. In tobacco, after one week of root hypoxia treatment, plants produced twice as many adventitious roots as the aerated plants, but their maximum length was reduced. Hypoxia severely reduced net photosynthesis, transpiration rates, and photosynthetic light responses.
View Article and Find Full Text PDFA population of eight open pollinated families of was selected from sites varying in precipitation regimes and elevation to examine the possible role of aquaporins in adaptation to different moisture conditions. Five aquaporins encoding , , , , and were cloned and detailed structural analyses were conducted to provide essential information that can explain their biological and molecular function. All five PiconAQPs contained hydrophilic aromatic/arginine selective filters to facilitate the transport of water.
View Article and Find Full Text PDFPlant water uptake and aquaporin-mediated root water transport are among the most salt-sensitive processes in most plants, but even relatively high salt concentrations do not appear to impair water transport processes in halophytes. To develop better understanding of these processes in halophytic plants, we compared the responses to NaCl of the two halophytic grasses varying in salt tolerance, Puccinellia nuttalliana and Poa juncifolia, with the glycophytic grass Poa pratensis. The plants were hydroponically grown and subjected to different NaCl concentrations for up to 10 days.
View Article and Find Full Text PDFOxygen deprivation commonly affects plants exposed to flooding and soil compaction. The resulting root hypoxia has an immediate effect on plant water relations and upsets water balance. Hypoxia inhibits root water transport and triggers stomatal closure.
View Article and Find Full Text PDFAquaporins (AQP) are channel proteins belonging to the Major Intrinsic Protein (MIP) superfamily that play an important role in plant water relations. The main role of aquaporins in plants is transport of water and other small neutral molecules across cellular biological membranes. AQPs have remarkable features to provide an efficient and often, specific water flow and enable them to transport water into and out of the cells along the water potential gradient.
View Article and Find Full Text PDFAquaporins are membrane integral proteins responsible for the transmembrane transport of water and other small neutral molecules. Despite their well-acknowledged importance in water transport, their significance in gas transport processes remains unclear. Growing evidence points to the involvement of plant aquaporins in CO delivery for photosynthesis.
View Article and Find Full Text PDFSoil pH is a major factor affecting plant growth. Plant responses to pH conditions widely vary between different species of plants. However, the exact mechanisms of high pH tolerance of plants are largely unknown.
View Article and Find Full Text PDFLow phosphorus (P) availability and high pH inhibit plant growth in calcareous soils and some oil sands reclamation sites in northeastern Alberta, Canada. In this study, we used a split-root hydroponic setup to test the effects of supplemental P with different calcium (Ca) concentrations and root-zone pH conditions on the growth and physiological response of trees commonly found in the region: paper birch ( Marsh.), trembling aspen ( Michx.
View Article and Find Full Text PDFAquaporins mediate the movement of water across cell membranes. Plasma membrane intrinsic protein 2;5 from Populus trichocarpa×deltoides (PtdPIP2;5) was previously demonstrated to be a functionally important water conducting aquaporin. To study the relevance of aquaporin-mediated root water transport at low temperatures, we generated transgenic Populus tremula×alba over-expressing PtdPIP2;5 under control of the maize ubiquitin promoter, and compared the physiological responses and water transport properties of the PtdPIP2;5 over-expressing lines (PtdPIP2;5ox) with wild-type plants.
View Article and Find Full Text PDF