The challenge of understanding the dynamics of a mobile impurity in an interacting quantum many-body medium comes from the necessity of including entanglement between the impurity and excited states of the environment in a wide range of energy scales. In this Letter, we investigate the motion of a finite mass impurity injected into a three-dimensional quantum Bose fluid as it starts shedding Bogoliubov excitations. We uncover a transition in the dynamics as the impurity's velocity crosses a critical value that depends on the strength of the interaction between the impurity and bosons as well as the impurity's recoil energy.
View Article and Find Full Text PDFWe examine stationary-state properties of an impurity particle injected into a one-dimensional quantum gas. We show that the value of the impurity's end velocity lies between zero and the speed of sound in the gas and is determined by the injection protocol. This way, the impurity's constant motion is a dynamically emergent phenomenon whose description goes beyond accounting for the kinematic constraints of the Landau approach to superfluidity.
View Article and Find Full Text PDFThe interplay of strong quantum correlations and far-from-equilibrium conditions can give rise to striking dynamical phenomena. We experimentally investigated the quantum motion of an impurity atom immersed in a strongly interacting one-dimensional Bose liquid and subject to an external force. We found that the momentum distribution of the impurity exhibits characteristic Bragg reflections at the edge of an emergent Brillouin zone.
View Article and Find Full Text PDFWe investigate the motion of an impurity particle injected with finite velocity into an interacting one-dimensional quantum gas. Using large-scale numerical simulations based on matrix product states, we observe and quantitatively analyze long-lived oscillations of the impurity momentum around a nonzero saturation value, called quantum flutter. We show that the quantum flutter frequency is equal to the energy difference between two branches of collective excitations of the model.
View Article and Find Full Text PDFWe investigate the dynamics of the one-dimensional strongly repulsive spin-1/2 Bose-Hubbard model for filling nu
The phase diagram in temperature and magnetic field of the metal-organic, two-leg, spin-ladder compound (C5H12N)2CuBr4 is studied by measurements of the specific heat and the magnetocaloric effect. We demonstrate the presence of an extended spin Luttinger-liquid phase between two field-induced quantum critical points and over a broad range of temperature. Based on an ideal spin-ladder Hamiltonian, comprehensive numerical modeling of the ladder specific heat yields excellent quantitative agreement with the experimental data across the entire phase diagram.
View Article and Find Full Text PDFWe investigate the propagation of spin excitations in a one-dimensional ferromagnetic Bose gas. While the spectrum of longitudinal spin waves in this system is soundlike, the dispersion of transverse spin excitations is quadratic, making a direct application of the Luttinger liquid theory impossible. By using a combination of different analytic methods we derive the large time asymptotic behavior of the spin-spin dynamical correlation function for strong interparticle repulsion.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2004
We show how the directed-loop Monte Carlo algorithm can be applied to study vertex models. The algorithm is employed to calculate the arrow polarization in the six-vertex model with the domain wall boundary conditions. The model exhibits spatially separated ordered and "disordered" regions.
View Article and Find Full Text PDFIn this Letter we report exact results on the infrared asymptotics of the one-particle dynamical correlation function of the gas of impenetrable spin 1/2 fermions at infinitesimal temperature. The correlation function shows signs of spin-charge separation with scaling behavior in the charge part and exponential decay as a function of the space coordinate in the spin part. Surprisingly, the anomalous dimensions in the charge part do not correspond to any unitary conformal field theory.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2002
Vertical-arrow fluctuations near the boundaries in the six-vertex model on the two-dimensional NxN square lattice with the domain wall boundary conditions are considered. The one-point correlation function ("boundary polarization") is expressed via the partition function of the model on a sublattice. The partition function is represented in terms of standard objects in the theory of orthogonal polynomials.
View Article and Find Full Text PDF