Publications by authors named "Zvejnieks G"

The results of first-principles calculations of the structural, electronic, elastic, vibrational, dielectric and optical properties, as well as the Raman and infrared (IR) spectra, of potassium hexafluorosilicate (KSiF; KSF) crystal are discussed. KSF doped with manganese atoms (KSF:Mn) is known for its ability to function as a phosphor in white LED applications due to the efficient red emission from Mn⁴⁺ activator ions. The simulations were performed using the CRYSTAL23 computer code within the linear combination of atomic orbitals (LCAO) approximation of the density functional theory (DFT).

View Article and Find Full Text PDF

We present theoretical justification for distorted Ruddlesden-Popper (RP) phases of the first-order by using hybrid density functional theory (DFT) calculations and group-theoretical analysis. We, thus, demonstrate the existence of the Jahn-Teller effect around an Fe[Formula: see text] ion in Sr[Formula: see text]FeO[Formula: see text]. On the calculation side, we have established a combination of Wu-Cohen (WC) exchange and Perdew-Wang (PW) correlation in a three-parameter functional WC3PW, giving the most accurate description of Sr[Formula: see text]FeO[Formula: see text] from the comparison of three hybrid DFT functionals.

View Article and Find Full Text PDF

While the bulk strontium titanate (STO) crystal characteristics are relatively well known, ultrathin perovskites' nanostructure, chemical composition, and crystallinity are quite complex and challenging to understand in detail. In our study, the DFT methods were used for modelling the Raman spectra of the STO bulk (space group I4/mcm) and 5-21-layer thin films (layer group p4/mbm) in tetragonal phase with different thicknesses ranging from ~0.8 to 3.

View Article and Find Full Text PDF

The atomic structure of antiphase boundaries in Sr-doped lanthanum scandate (LaSrScO) perovskite, promising as the proton conductor, was modelled by means of DFT method. Two structural types of interfaces formed by structural octahedral coupling were constructed: edge- and face-shared. The energetic stability of these two interfaces was investigated.

View Article and Find Full Text PDF

Cobalt based perovskites have great potential for numerous applications. Contrary to a generally assumed hexagonal space group (SG P6/mmc) model as the ground state of BaCoO (BCO), our hybrid DFT calculations with B1WC density functional and the symmetry group-subgroup derived crystal structure model support the ground state of BCO to be indeed monoclinic, in agreement with recent experimental predictions [Chin et al., Phys.

View Article and Find Full Text PDF

We present the results of a detailed first principles study of the piezoelectric properties of the (SrTiO)/(BaTiO) heterostructure using the 3D STO/BTO superlattice model. The atomic basis set, hybrid functionals and slabs with different numbers of STO and BTO layers were used. The interplay between ferroelectric (FE) and antiferrodistortive (AFD) displacements is carefully analyzed.

View Article and Find Full Text PDF

The colloidal processing of nearly monodisperse and highly crystalline single-domain ferroelectric or ferromagnetic nanocubes is a promising route to produce superlattice structures for integration into next-generation devices, whereas controlling the local behaviour of nanocrystals is imperative for fabricating highly-ordered assemblies. The current picture of nanoscale polarization in individual nanocrystals suggests a potential presence of a significant dipolar interaction, but its role in the condensation of nanocubes is unknown. We simulate the self-assembly of colloidal dipolar nanocubes under osmotic compression and perform the microstructural characterization of their densified ensembles.

View Article and Find Full Text PDF

An enhancement of the piezoelectric properties of lead-free materials, which allow conversion of mechanical energy into electricity, is a task of great importance and interest. Results of first-principles calculations of piezoelectric/electromechanical properties of the BaSrTiO (BSTO) ferroelectric solid solution with a perovskite structure are presented and discussed. Calculations are performed within the linear combination of atomic orbitals (LCAO) approximation and periodic-boundary conditions, using the advanced hybrid functionals of density functional theory (DFT).

View Article and Find Full Text PDF

A study of 3d electrostatic self-assembly (SA) in systems of charged nanoparticles (NPs) is one of the most difficult theoretical problems. In particular, the limiting case of negligible or very low polar media (e.g.

View Article and Find Full Text PDF

The kinetics of mesoscopic pattern formation is studied for a reversible A+B⇌0 reaction between mobile oppositely charged molecules at the interface. Using formalism of the joint correlation functions, non-equilibrium charge screening and reverse Monte Carlo methods, it is shown that labyrinth-like percolation structure induced by (even moderate-rate) reaction is principally non-steady-state one and is associated with permanently growing segregation of dissimilar reactants and aggregation of similar reactants into mesoscopic size domains. A role of short-range and long-range reactant interactions in pattern formation is discussed.

View Article and Find Full Text PDF

The kinetics of pattern formation and phase separation in a system of two types of oppositely charged molecules with competing short- and long-range interactions on surfaces/interfaces is studied combining three methods: a microscopic formalism of the joint correlation functions, reverse Monte Carlo, and nonequilibrium charge-screening factors. The molecular ordering occurs on the background of the Ostwald ripening and thus is strongly nonequilibrium. We have demonstrated how initial random distribution of molecules is changed for loose similar-molecule aggregates, with further reorganization into dense macroscopic domains of oppositely charged molecules.

View Article and Find Full Text PDF

A microscopic formalism based on computing many-particle densities is applied to the analysis of the diffusion-controlled kinetics of pattern formation in oppositely charged molecules on surfaces or adsorbed at interfaces with competing long-range Coulomb and short-range Lennard-Jones interactions. Particular attention is paid to the proper molecular treatment of energetic interactions driving pattern formation in inhomogeneous systems. The reverse Monte Carlo method is used to visualize the spatial molecular distribution based on the calculated radial distribution functions (joint correlation functions).

View Article and Find Full Text PDF

The A+B-->0 reaction model with a surface reconstruction is analyzed. It is compared with another similar model for the A+1/2B2-->0 reaction [V. N.

View Article and Find Full Text PDF

We reply to the Comment by Zhdanov [preceding paper, Phys. Rev. E 65, blacksquare, square, filled (2002)] on our recent paper [G.

View Article and Find Full Text PDF

The standard Lotka-type model, which was introduced for the first time by Mai et al. [J. Phys.

View Article and Find Full Text PDF
Monte carlo simulations of the periodically forced autocatalytic A+B-->2B reaction.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics

April 2000

The one-parameter autocatalytic Lotka-like model, which exhibits self-organized oscillations, is considered on a two-dimensional lattice, using Monte Carlo computer simulations. Despite the simplicity of the model, periodic modulation of the only control parameter drives the system through a sequence of frequency locking, quasiperiodic, and resonance behavior.

View Article and Find Full Text PDF