Publications by authors named "Zvejniece L"

: Phenibut is a central nervous system drug that is registered and used in clinical practice as a prescription medication. In recent decades, the drug has become popular as a "nootropic and cognition enhancer" because of its active marketing as a dietary or food supplement sold online. This has resulted in a growing number of case reports on acute toxicity and withdrawal symptoms and has raised concerns about the quality of phenibut-containing products.

View Article and Find Full Text PDF

The sigma-1 receptor (S1R) is involved in intracellular lipid synthesis and transport. Recent studies have shown that its genetic inactivation impairs adipogenic differentiation in vitro. This study investigated the role of S1R in adipose tissue physiology and metabolic health using adult and old WT and S1R KO mice.

View Article and Find Full Text PDF

Glucose is the main energy source of the brain, yet recent studies demonstrate that fatty acid oxidation (FAO) plays a relevant role in the pathogenesis of central nervous system disorders. We evaluated FAO in brain mitochondria under physiological conditions, in the aging brain, and after stroke. Using high-resolution respirometry we compared medium-chain (MC, octanoylcarnitine) and long-chain (LC, palmitoylcarnitine) acylcarnitines as substrates of β-oxidation in the brain.

View Article and Find Full Text PDF

Objective: Given its key homeostatic role affecting mitochondria, ionotropic and metabotropic receptors, and voltage-gated ion channels, sigma-1 receptor (Sig1R) represents an interesting target for epilepsy management. Antiseizure effects of the positive allosteric modulator E1R have already been reported in acute seizure models. Although modulation of serotonergic neurotransmission is considered the main mechanism of action of fenfluramine, its interaction with Sig1R may be of additional relevance.

View Article and Find Full Text PDF

Background And Purpose: Statins are competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGCR), and exert adverse effects on mitochondrial function, although the mechanisms underlying these effects remain unclear. We used a tamoxifen-induced Hmgcr-knockout (KO) mouse model, a multi-omics approach and mitochondrial function assessments to investigate whether decreased HMGCR activity impacts key liver energy metabolism pathways.

Experimental Approach: We established a new mouse strain using the Cre/loxP system, which enabled whole-body deletion of Hmgcr expression.

View Article and Find Full Text PDF

Post-acute sequelae of COVID-19 can present as multi-organ pathology, with neuropsychiatric symptoms being the most common symptom complex, characterizing long COVID as a syndrome with a significant disease burden for affected individuals. Several typical symptoms of long COVID, such as fatigue, depressive symptoms and cognitive impairment, are also key features of other psychiatric disorders such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and major depressive disorder (MDD). However, clinically successful treatment strategies are still lacking and are often inspired by treatment options for diseases with similar clinical presentations, such as ME/CFS.

View Article and Find Full Text PDF

Long-chain acylcarnitines (LCACs) are intermediates of fatty acid oxidation and are known to exert detrimental effects on mitochondria. This study aimed to test whether lowering LCAC levels with the anti-ischemia compound 4-[ethyl(dimethyl)ammonio]butanoate (methyl-GBB) protects brain mitochondrial function and improves neurological outcomes after transient middle cerebral artery occlusion (MCAO). The effects of 14 days of pretreatment with methyl-GBB (5 mg/kg, p.

View Article and Find Full Text PDF

Deletion of exon 2 of the trimethyllysine hydroxylase epsilon (TMLHE) gene was identified in probands with autism spectrum disorder (ASD). TMLHE encodes the first enzyme in carnitine biosynthesis, N6-trimethyllysine dioxygenase (TMLD). Researchers have suggested that carnitine depletion could be important for the development of ASD and cognitive, locomotor and social dysfunctions, but previous findings have been inconclusive regarding the specific role of endogenous carnitine.

View Article and Find Full Text PDF

Over the last decade, sigma-1 receptor (Sig1R) has been recognized as a valid target for the treatment of seizure disorders and seizure-related comorbidities. Clinical trials with Sig1R ligands are underway testing therapies for the treatment of drug-resistant seizures, developmental and epileptic encephalopathies, and photosensitive epilepsy. However, the direct molecular mechanism by which Sig1R modulates seizures and the balance between excitatory and inhibitory pathways has not been fully elucidated.

View Article and Find Full Text PDF

As traumatic brain injury (TBI) is one of the major causes of permanent disability, there is increasing interest in the long-term outcome of TBI. While motor deficits, cognitive impairment and longer-term risks of neurodegenerative disease are well-established consequences in animal models of TBI, pain is discussed less often despite its high prevalence. The current study addresses the need to characterize the extent of chronic pain and long-term behavioral impairments induced by moderate lateral fluid percussion injury (latFPI) in mice up to 12 months post-TBI and evaluates the validity of the model.

View Article and Find Full Text PDF

Sigma-1 receptor (Sig1R) has been proposed as a therapeutic target for neurological, neurodegenerative, and psychiatric disorders, including depression and anxiety. Identifying metabolites that are affected by Sig1R absence and cross-referencing them with specific mood-related behaviors would be helpful for the development of new therapies for Sig1R-associated disorders. Here, we examined metabolic profiles in the blood and brains of male CD-1 background Sig1R knockout (KO) mice in adulthood and old age and correlated them with the assessment of depression- and anxiety-related behaviors.

View Article and Find Full Text PDF

Sigma-1 receptor (Sig1R) is an endoplasmic reticulum (ER)-related membrane protein, that forms heteromers with other cellular proteins. As the mechanism of action of this chaperone protein remains unclear, the aim of the present study was to detect and analyze the intracellular dynamics of Sig1R in live cells using super-resolution imaging microscopy. For that, the Sig1R-yellow fluorescent protein conjugate (Sig1R-YFP) together with fluorescent markers of cell organelles were transfected into human ovarian adenocarcinoma (SK-OV-3) cells with BacMam technology.

View Article and Find Full Text PDF

Chemokines and their receptors regulate the migration of immune cells and the dissemination of cancer cells. CCR1, CCR2, CCR3, and CCR5 all belong to a single protein homology cluster and respond to the same inflammatory chemokines. We previously reported that CCR1 and CCR2B are induced upon Epstein-Barr virus (EBV) infection of B cells in vitro.

View Article and Find Full Text PDF

Macro photography is applicable for imaging various tissue samples at high magnification to perform qualitative and quantitative analyses. Tissue preparation and subsequent image capture are steps performed immediately after the ischemia-reperfusion (IR) experiment and must be performed in a timely manner and with appropriate care. For the evaluation of IR-induced damage in the heart and brain, this paper describes 2,3,5-triphenyl-2H-tetrazolium chloride (TTC)-based staining followed by macro photography.

View Article and Find Full Text PDF

Neuroprotective effects of Sigma-1 receptor (S1R) ligands have been observed in multiple animal models of neurodegenerative diseases. Traumatic brain injury (TBI)-related neurodegeneration can induce long-lasting physical, cognitive, and behavioral disabilities. The aim of our study was to evaluate the role of S1R in the development of neurological deficits after TBI.

View Article and Find Full Text PDF

Chronic-pain patients often suffer from depression. In rodent models of neuropathic pain, animals develop depression-like and anxiety behaviors, indicating a relationship between chronic pain and affective disorders. However, the underlying neurobiological mechanisms linking chronic pain and depression are not yet fully understood.

View Article and Find Full Text PDF

There is a growing body of evidence demonstrating the significant involvement of the sigma-1 chaperone protein in the modulation of seizures. Several sigma-1 receptor (Sig1R) ligands have been demonstrated to regulate the seizure threshold in acute and chronic seizure models. However, the mechanism by which Sig1R modulates the excitatory and inhibitory pathways in the brain has not been elucidated.

View Article and Find Full Text PDF

Altered neuronal Ca homeostasis and mitochondrial dysfunction play a central role in the pathogenesis of traumatic brain injury (TBI). R-Phenibut ((3R)-phenyl-4-aminobutyric acid) is an antagonist of the subunit of voltage-dependent calcium channels (VDCC) and an agonist of gamma-aminobutyric acid B (GABA-B) receptors. The aim of this study was to evaluate the potential therapeutic effects of R-phenibut following the lateral fluid percussion injury (latFPI) model of TBI in mice and the impact of R- and S-phenibut on mitochondrial functionality .

View Article and Find Full Text PDF

Sigma-1 receptors (Sig-1Rs) have been implicated in many neurological and psychiatric disorders and are a novel target for the treatment of such disorders. Sig-1R expression/activity deficits are linked to neurodegeneration, whereas the mechanisms mediated by Sig-1R are still unclear. Here, presynaptic [H]GABA and L-[C]glutamate transport was analysed in rat brain nerve terminals (synaptosomes) in the presence of the Sig-1R antagonist NE-100.

View Article and Find Full Text PDF

Phenibut is a nootropic drug that exerts anxiolytic and antinociceptive effects by acting on the GABA receptor and the α-δ subunit of voltage-dependent calcium channels. An increased number of reports of dependence to and intoxication by phenibut purchased online on the one hand and the wide prescription of phenibut in Eastern Europe for more than half a century on the other hand have resulted in a number of controversies regarding its use. In this review, we have summarized currently available information from case reports of phenibut dependence and intoxication and safety data from clinical trials.

View Article and Find Full Text PDF

R-phenylpiracetam (R-PhP, (4R)-2-(4-phenyl-2-oxopyrrolidin-1-yl)acetamide) is an optical isomer of phenotropil, a clinically-used nootropic drug that improves physical condition and cognition. Recently, R-PhP was shown to bind to the dopamine transporter (DAT). Since growing evidence suggests that dysfunction of the dopaminergic system is associated with persistent neuroinflammation, the aim of this study was to determine whether R-PhP, an inhibitor of DAT, has neuroprotective and anti-inflammatory effects in male mice.

View Article and Find Full Text PDF

MK-801, a N-methyl-d-aspartate receptor antagonist, is widely used in animal preclinical experiments to induce memory and learning impairments and schizophrenia-like behavior. In the present study, we compared the plasma and brain tissue concentrations of MK-801 after intraperitoneal (i.p.

View Article and Find Full Text PDF

The weight-drop model is used widely to replicate closed-head injuries in mice; however, the histopathological and functional outcomes may vary significantly between laboratories. Because skull fractures are reported to occur in this model, we aimed to evaluate whether these breaks may influence the variability of the weight-drop (WD) model. Male Swiss Webster mice underwent WD injury with either a 2 or 5 mm cone tip, and behavior was assessed at 2 h and 24 h thereafter using the neurological severity score.

View Article and Find Full Text PDF

The N-methyl-d-aspartate receptor antagonist, MK-801, is widely used to induce memory and learning impairments in preclinical studies. MK-801 is mainly injected intraperitoneally (i.p.

View Article and Find Full Text PDF

The total synthesis of both the double bond isomers of indolizine alkaloid 8-deoxypumiliotoxin 193H has been accomplished. Both the double bond isomers Z-4 and E-4 induced convulsions and inhibited neuro-muscular activity at a dose of 25 mg/kg after intraperitoneal injection in mice. The lethal dose of Z-4 and E-4 was 100 mg/kg, indicating that 8-deoxypumiliotoxin 193H is 10-times less toxic than the known pumiliotoxin (+)-251 D.

View Article and Find Full Text PDF