Correction for 'A novel platinum(II) complex with a berberine derivative as a potential antitumor agent targeting G-quadruplex DNA' by Shu-Lin Zhang , , 2025, https://doi.org/10.1039/d4ob01705f.
View Article and Find Full Text PDFTwo series of novel acridone derivatives were designed and synthesized, with their anticancer activity evaluated. Most of these compounds showed potent antiproliferative activity against cancer cell lines. Among them, compound C4 with dual 1,2,3-triazol moieties exhibited the most potent activity against Hep-G2 cells with IC value determined to be 6.
View Article and Find Full Text PDFI-motifs play key regulatory roles in biological processes, holding great potential as attractive therapeutic targets. In the present study, we developed a novel fluorescent probe with strong and selective binding to the gene promoter i-motif. had an i-motif-binding carbazole moiety conjugated with naphthalimide fluorescent groups.
View Article and Find Full Text PDFIn the quest for rare earth metal complexes with enhanced cancer chemotherapeutic properties, the discovery of seven lanthanide(iii) complexes bearing 8-hydroxyquinoline-N-oxide (NQ) and 1,10-phenanthroline (phen) ligands, i.e., [SmIII(NQ)(phen)(H2O)Cl2] (Ln1), [EuII(NQ)(phen)(H2O)Cl2] (Ln2), [GdIII(NQ)(phen)(H2O)Cl2] (Ln3), [DyIII(NQ)(phen)(H2O)Cl2] (Ln4), [HoIII(NQ)(phen)(H2O)Cl2] (Ln5), [ErIII(NQ)(phen)(H2O)Cl2] (Ln6), and [YbIII(NQ)(phen)(H2O)Cl2] (Ln7), as potential anticancer drugs is described.
View Article and Find Full Text PDFA novel optically pure dinuclear copper(II) complex of a rosin derivative dehydroabietic acid (DHA, HL) was synthesized and fully characterized. The in vitro antitumor activities of the copper(II) complex Cu2(µ2-O)(L)4(DMF)2 (1) were explored and compared with those of a trinuclear iron(III) complex [Fe3(µ3-O)(L)6(CH3OH)2(CH3O)]·H2O (2). 1 was more cytotoxic than 2, and the in vitro cytotoxicity of 1 was comparable to that of cisplatin and oxaliplatin.
View Article and Find Full Text PDFTelomere is a specialized DNA-protein complex that plays an important role in maintaining chromosomal integrity. Shelterin is a protein complex formed by six different proteins, with telomeric repeat factors 1 (TRF1) and 2 (TRF2) binding to double-strand telomeric DNA. Telomeric DNA consists of complementary G-rich and C-rich repeats, which could form G-quadruplex and intercalated motif (i-motif), respectively, during cell cycle.
View Article and Find Full Text PDFUpregulation of platelet-derived growth factor receptor β (PDGFR-β) has been found to be associated with development of various types of cancers, which has become an attractive target for anti-tumor treatment. Previously, we have synthesized and studied an acridone derivative B19, which can selectively bind to and stabilize oncogene c-myc promoter i-motif, resulting in down-regulation of c-myc transcription and translation, however its effect on tumor cells apoptosis requires improvement. In the present study, we synthesized a variety of B19 derivatives containing a known anti-cancer fluorescent chromophore naphthalimide for the purpose of enhancing anti-cancer activity.
View Article and Find Full Text PDFMany metal complexes are potent candidates as mitochondrial-targeting agents. In this study, four novel Zn(II) complexes, [Zn(BPQA)Cl] (Zn1), [Zn(BPQA)(Curc)]Cl (Zn2), [Zn(PQA)Cl] (Zn3), and [Zn(PQA)(Curc)]Cl (Zn4), containing N,N-bis(pyridin-2-ylmethyl)benzofuro[3,2-b]quinolin-11-amine (BPQA), N-(pyridin-2-ylmethyl)benzofuro[3,2-b]quinolin-11-amine (PQA), and curcumin (H-Curc) were synthesized. An MTT assay showed that Zn1-Zn4 had strong anticancer activities against SK-OV-3/DDP and T-24 tumor cells with IC values of 0.
View Article and Find Full Text PDFThe oncogene is an important regulator for cell growth and differentiation, and its aberrant overexpression is closely related to the occurrence and development of various cancers. Thus, the suppression of transcription and expression has been investigated for cancer treatment. In this study, various new bisacridine derivatives were synthesized and evaluated for their binding with promoter G-quadruplex and i-motif.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) are global epidemic public health problems with pathogenesis incompletely understood. Hepatocyte excessive apoptosis is a significant symbol for NAFLD/NASH patients, and therefore anti-apoptosis therapy could be used for NAFLD/NASH treatment. Up-regulation of BCL-2 has been found to be closely related with anti-apoptosis.
View Article and Find Full Text PDFNovel red Zn(ii) complex-based fluorescent probes featuring cryptolepine-curcumin derivatives, namely, [Zn(BQ)Cl] (BQ-Zn) and [Zn(BQ)(Cur)]Cl (BQCur-Zn), were developed for the simple and fluorescent label-free detection of apoptosis, an important biological process. The probes could synergistically promote mitochondrion-mediated apoptosis and enhance tumor therapeutic effects in vitro and vivo.
View Article and Find Full Text PDFTwo optically pure chiral binuclear copper(ii) complexes [Cu2(μ-Cl)2L2]·CH2Cl2 (1) and Cu2L4 (2) based on the natural product rosin derivative N-(5-dehydroabietyl-1,3,4-thiadiazole)-2-substituted pyridinecarboxamide (HL) were prepared, fully characterized and their biological activities were evaluated. The circular dichroism (CD), fluorescence spectroscopy, and DNA melting studies indicate that 1 and 2 interact with calf thymus DNA (CT DNA) via intercalation. It can be concluded that 1 and 2 have a strong affinity to bovine serum albumin (BSA) based on the fluorescence and CD spectral evidence.
View Article and Find Full Text PDFThe development of optically pure drugs is the trend of new drugs research. Searching for optically pure metallodrugs against cancer has not been taken seriously. [CuLCl]Cl·2CHCl·HO (1) and [CuLBr]Br·2CHCl (2) (L = 2-amino-5-dehydroabietyl-1,3,4-thiadiazole), two rosin-derivative based optically pure chiral copper(II) complexes, are rationally synthesized as potential anticancer agents.
View Article and Find Full Text PDFTwo platinum(II) complexes [Pt(L)(DMSO)Cl] (1) and [Pt(L)(pn)]Cl (2) with 5-bromo-oxoisoaporphine (H-L) were synthesized. We found that the two new platinum(II) complexes were more selective for Hep-G2 tumor cells than for normal cells (HL-7702, WI-38 and L-o2 cell lines). 5-Bromine-oxoisoaporphine platinum(II) complex 2 was a telomerase inhibitor targeting c-myc G4, and it triggered Hep-G2 cell apoptosis more potently than complex 1.
View Article and Find Full Text PDFA series of group-10 metal complexes 1-14 of oxoisoaporphine derivatives were designed and synthesized. 1-14 were more selectively cytotoxic to Hep-G2 cells comparing with normal liver cells. In vitro cytotoxicity results showed that complexes 1-6, 7, 8, 10 and 11, especially 3, were telomerase inhibitors targeting c-myc, telomeric, and bcl-2 G4s and triggered cell senescence and apoptosis; they also caused telomere/DNA damage and S phase arrest.
View Article and Find Full Text PDFTwo compounds previously isolated from traditional Chinese medicine, (DC), 6-hydroxyl-oxoisoaporphine (H-L), and 4,6-di(2-pyridinyl)benzo[]isoindolo[4,5,6-]quinolin-8(5)-one (H-L), were known to have in vitro antitumor activity and to selectively bind human telomeric, c-myc, and bcl-2 G-quadruplexes (G4s). In this study, the binding properties of these two compounds to telomerase were investigated through molecular docking and telomeric repeat amplication protocol and silver staining assay (TRAP-silver staining assay). The binding energies bound to human telomerase RNA were calculated by molecular docking to be -6.
View Article and Find Full Text PDF[Pd(L)(DMSO)Cl] (1) and [Pt(L)(DMSO)Cl] (2) with 9-amino-oxoisoaporphine (L), were synthesized and characterized. 1 and 2 are more selectively cytotoxic to Hep-G2 cells versus normal liver cells (HL-7702). Various experiments showed that 2 acted as telomerase inhibitors targeting G4-DNA and triggered cell apoptosis by interacting with c-myc G4-DNA.
View Article and Find Full Text PDFTwo G-quadruplex ligands: [Co(H-L)Cl] (Co1) and [Co(L)][CoCl]⋅2HO (Co2) have been synthesized and characterized. Two cobalt oxoisoaporphine complexes exhibited selective cytotoxicity to SK-OV-3/DDP cells than for HL-7702 cells. Cytotoxic mechanism studies indicated that both Co1 and Co2 were telomerase inhibitor targeting c-myc, telomere, and bcl-2 G4s, and triggering cell senescence and apoptosis, which caused S phase arrest.
View Article and Find Full Text PDF