Publications by authors named "Zuzanna Piwkowska"

Driving perception by direct activation of neural ensembles in cortex is a necessary step for achieving a causal understanding of the neural code for auditory perception and developing central sensory rehabilitation methods. Here, using optogenetic manipulations during an auditory discrimination task in mice, we show that auditory cortex can be short-circuited by coarser pathways for simple sound identification. Yet when the sensory decision becomes more complex, involving temporal integration of information, auditory cortex activity is required for sound discrimination and targeted activation of specific cortical ensembles changes perceptual decisions, as predicted by our readout of the cortical code.

View Article and Find Full Text PDF

Salience is a broad and widely used concept in neuroscience whose neuronal correlates, however, remain elusive. In behavioral conditioning, salience is used to explain various effects, such as stimulus overshadowing, and refers to how fast and strongly a stimulus can be associated with a conditioned event. Here, we identify sounds of equal intensity and perceptual detectability, which due to their spectro-temporal content recruit different levels of population activity in mouse auditory cortex.

View Article and Find Full Text PDF

A wide diversity of models have been proposed to account for the spiking response of central neurons, from the integrate-and-fire (IF) model and its quadratic and exponential variants, to multiple-variable models such as the Izhikevich (IZ) model and the well-known Hodgkin-Huxley (HH) type models. Such models can capture different aspects of the spiking response of neurons, but there is few objective comparison of their performance. In this article, we provide such a comparison in the context of well-defined stimulation protocols, including, for each cell, DC stimulation, and a series of excitatory conductance injections, arising in the presence of synaptic background activity.

View Article and Find Full Text PDF

Cortical neurons behave similarly to stochastic processes, as a consequence of their irregularity and dense connectivity. Their firing pattern is close to a Poisson process, and their membrane potential (V(m)) is analogous to colored noise. One way to characterize this activity is to identify V(m) to a multidimensional stochastic process.

View Article and Find Full Text PDF

We review here the development of Hodgkin-Huxley (HH) type models of cerebral cortex and thalamic neurons for network simulations. The intrinsic electrophysiological properties of cortical neurons were analyzed from several preparations, and we selected the four most prominent electrophysiological classes of neurons. These four classes are "fast spiking", "regular spiking", "intrinsically bursting" and "low-threshold spike" cells.

View Article and Find Full Text PDF

Intracellular recordings of neuronal membrane potential are a central tool in neurophysiology. In many situations, especially in vivo, the traditional limitation of such recordings is the high electrode resistance and capacitance, which may cause significant measurement errors during current injection. We introduce a computer-aided technique, Active Electrode Compensation (AEC), based on a digital model of the electrode interfaced in real time with the electrophysiological setup.

View Article and Find Full Text PDF

Cortical neurons are subject to sustained and irregular synaptic activity which causes important fluctuations of the membrane potential (V(m)). We review here different methods to characterize this activity and its impact on spike generation. The simplified, fluctuating point-conductance model of synaptic activity provides the starting point of a variety of methods for the analysis of intracellular V(m) recordings.

View Article and Find Full Text PDF

The optimal patterns of synaptic conductances for spike generation in central neurons is a subject of considerable interest. Ideally such conductance time courses should be extracted from membrane potential (V(m)) activity, but this is difficult because the nonlinear contribution of conductances to the V(m) renders their estimation from the membrane equation extremely sensitive. We outline here a solution to this problem based on a discretization of the time axis.

View Article and Find Full Text PDF

In neocortical neurons, network activity can activate a large number of synaptic inputs, resulting in highly irregular subthreshold membrane potential (V(m)) fluctuations, commonly called "synaptic noise." This activity contains information about the underlying network dynamics, but it is not easy to extract network properties from such complex and irregular activity. Here, we propose a method to estimate properties of network activity from intracellular recordings and test this method using theoretical and experimental approaches.

View Article and Find Full Text PDF