Background: The critically low hepatic iron stores of newborn piglets are considered to be a major cause of neonatal iron deficiency in modern breeds of domestic pig (Sus domestica). The main factor believed to contribute to this phenomenon is large litter size, which has been an objective of selective breeding of pigs for decades. As consequence, iron transferred from the pregnant sow has to be distributed among a greater number of fetuses.
View Article and Find Full Text PDFIron deficiency is the most common mammalian nutritional disorder. However, among mammalian species iron deficiency anemia (IDA), occurs regularly only in pigs. To cure IDA, piglets are routinely injected with high amounts of iron dextran (FeDex), which can lead to perturbations in iron homeostasis.
View Article and Find Full Text PDFIron is an essential nutrient during all stages of mammalian development. Studies carried out over the last 20 years have provided important insights into cellular and systemic iron metabolism in adult organisms and led to the deciphering of many molecular details of its regulation. However, our knowledge of iron handling in prenatal development has remained remarkably under-appreciated, even though it is critical for the health of both the embryo/fetus and its mother, and has a far-reaching impact in postnatal life.
View Article and Find Full Text PDFThe critical function of ferroportin (Fpn) in maintaining iron homeostasis requires complex and multilevel control of its expression. Besides iron-dependent cellular and systemic control of Fpn expression, other metals also seem to be involved in regulating the gene. Here, we found that copper loading significantly enhanced transcription in an Nrf2-dependent manner in primary bone-marrow-derived macrophages (BMDMs).
View Article and Find Full Text PDF