Publications by authors named "Zuzanna Kopec"

Article Synopsis
  • Preterm infants are highly susceptible to iron deficiency, but understanding of their iron regulation is limited.
  • The research aimed to create a suitable animal model by inducing prematurity in piglets, allowing assessment of iron status similar to that of preterm human infants.
  • Findings showed that preterm piglets had lower body weight and plasma iron but higher tissue iron and levels of iron-regulatory hormones, indicating a unique pattern of iron metabolism that suggests functional iron deficiency and accumulation.
View Article and Find Full Text PDF
Article Synopsis
  • * The study investigated iron transfer efficiency across the placenta as a potential reason for the observed differences in iron status between wild boar and Polish Large White (PLW) piglets.
  • * Analysis revealed no major differences in iron transporter gene expression between the two species, but wild boar placentas showed higher levels of certain enzymes that aid in iron export to the fetus.
View Article and Find Full Text PDF

Background: The critically low hepatic iron stores of newborn piglets are considered to be a major cause of neonatal iron deficiency in modern breeds of domestic pig (Sus domestica). The main factor believed to contribute to this phenomenon is large litter size, which has been an objective of selective breeding of pigs for decades. As consequence, iron transferred from the pregnant sow has to be distributed among a greater number of fetuses.

View Article and Find Full Text PDF

Iron deficiency is the most common mammalian nutritional disorder. However, among mammalian species iron deficiency anemia (IDA), occurs regularly only in pigs. To cure IDA, piglets are routinely injected with high amounts of iron dextran (FeDex), which can lead to perturbations in iron homeostasis.

View Article and Find Full Text PDF

Iron is an essential nutrient during all stages of mammalian development. Studies carried out over the last 20 years have provided important insights into cellular and systemic iron metabolism in adult organisms and led to the deciphering of many molecular details of its regulation. However, our knowledge of iron handling in prenatal development has remained remarkably under-appreciated, even though it is critical for the health of both the embryo/fetus and its mother, and has a far-reaching impact in postnatal life.

View Article and Find Full Text PDF

The critical function of ferroportin (Fpn) in maintaining iron homeostasis requires complex and multilevel control of its expression. Besides iron-dependent cellular and systemic control of Fpn expression, other metals also seem to be involved in regulating the gene. Here, we found that copper loading significantly enhanced transcription in an Nrf2-dependent manner in primary bone-marrow-derived macrophages (BMDMs).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessions2570d98vv0i9l4rdcglre44mdjemgvo): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once