Publications by authors named "Zuzana Vivodova"

We tested the effects of galactoglucomannan oligosaccharides (GGMOs) and/or cadmium (Cd) on peroxidase activity and the proteome in maize (Zea mays L.) roots and leaves. Our previous work confirmed that GGMOs ameliorate the symptoms of Cd stress in seedlings.

View Article and Find Full Text PDF

To avoid human health endangerment via the food chain, the investigation of Cd's effects on plant growth and development, and the discovery of various compounds that would mitigate the toxic effects of Cd, are essential. Galactoglucomannan oligosaccharides (GGMOs) are biologically active compounds, which improve the growth and development of plants. Therefore, the impact of GGMOs on the mitigation of Cd toxicity on maize (Zea mays L.

View Article and Find Full Text PDF

Cadmium (Cd) is a transition metal and hazardous pollutant that has many toxic effects on plants. This heavy metal poses a health risk for both humans and animals. The cell wall is the first structure of a plant cell that is in contact with Cd; therefore, it can change its composition and/or ratio of wall components accordingly.

View Article and Find Full Text PDF

Phosphate fertilisers and past mining activity are significant source of cadmium (Cd) pollution; thus, the concentration of Cd in agricultural soils has been substantially rising. Various substances have been tested for their potential to alleviate the toxicity of Cd and stimulate the accumulation of Cd in plant organs. This study brought new insight of the impact of galactoglucomannan oligosaccharides (GGMOs) on the maize plants grown under/in Cd stress.

View Article and Find Full Text PDF

The presence of antimony (Sb) in high concentrations in the environment is recognized as an emerging problem worldwide. The toxicity of Sb in plant tissues is known; however, new methods of plant tolerance improvement must be addressed. Here, poplar callus ( L.

View Article and Find Full Text PDF

Auxins are plant hormones that affect plant growth, development, and improve a plant's tolerance to stress. In this study, we found that the application of indole-3-butyric acid (IBA) had diverse effects on the growth of maize ( L.) roots treated without/with Cd.

View Article and Find Full Text PDF

Cadmium-tolerant plants were studied for their possible usage in phytoremediation techniques. However, their response to cadmium cations at a cellular level has not been properly studied. Silicon is a beneficial element that seems to change the plant's response to the Cd presence.

View Article and Find Full Text PDF

One of the major reasons why cadmium is toxic in plants is because it disturbs their nutrient balance. The aim of this work is to investigate the effects of cadmium (Cd) and/or silicon (Si) on the nutrient status of poplar callus cells after 3 and after 9 weeks of Cd exposure and to study its possible relationship with the changes in the fresh and dry mass, the plasma membrane integrity, and cadmium tolerance patterns. A principal component analysis (PCA) was performed to reveal the associations among the elements, and the variability between both treatments, and between the 3- and 9-week stages.

View Article and Find Full Text PDF

Auxin is one of the crucial plant hormones which stimulates and controls cell and plant growth. The effects of auxin IBA (indole-3-butyric acid) during 10-days on maize plants growth in controlled conditions (hydroponic, 16-h photoperiod, 70% humidity, 25/20 °C temperature), depended on its concentration in the substrate. A high concentration (10 M) of IBA inhibited root growth, evoked the development of apoplasmic barriers (Casparian bands and suberin lamellae) closer to the root apex, and elevated the amount of lignin in roots.

View Article and Find Full Text PDF