Precisely altering gene expression is critical for understanding molecular processes of embryogenesis. Although some tools exist for transgene misexpression in developing chick embryos, we have refined and advanced them by simplifying and optimizing constructs for spatiotemporal control. To maintain expression over the entire course of embryonic development we use an enhanced transposon system that efficiently integrates sequences into the host genome.
View Article and Find Full Text PDFFor decades, the quail-chick system has been a gold standard approach to track cells and their progenies over complex morphogenetic movements and long-range migrations as well as to unravel their dialogue and interplays in varied processes of cell induction. More specifically, this model became decisive for the systematic explorations of the neural crest and its lineages and allowed a tremendous stride in understanding the wealth and complexity of this fascinating cell population. Much of our knowledge on craniofacial morphogenesis and vertebrate organogenesis was first gained in avian chimeras and later extended to mammalian models and humans.
View Article and Find Full Text PDFMany tissues fold into complex shapes during development. Controlling this process in vitro would represent an important advance for tissue engineering. We use embryonic tissue explants, finite element modeling, and 3D cell-patterning techniques to show that mechanical compaction of the extracellular matrix during mesenchymal condensation is sufficient to drive tissue folding along programmed trajectories.
View Article and Find Full Text PDF