Complex gut microbiota increases chickens' resistance to enteric pathogens. However, the principles of this phenomenon are not understood in detail. One of the possibilities for how to decipher the role of gut microbiota in chickens' resistance to enteric pathogens is to systematically characterise the gene expression of individual gut microbiota members colonising the chicken caecum.
View Article and Find Full Text PDFThe gut microbiota of warm-blooded vertebrates consists of bacterial species belonging to two main phyla; Firmicutes and Bacteroidetes. However, does it mean that the same bacterial species are found in humans and chickens? Here we show that the ability to survive in an aerobic environment is central for host species adaptation. Known bacterial species commonly found in humans, pigs, chickens and Antarctic gentoo penguins are those capable of extended survival under aerobic conditions, i.
View Article and Find Full Text PDFSections of chicken gut differ in many aspects, e.g., the passage of digesta (continuous vs.
View Article and Find Full Text PDFIn this study, we addressed the origin of chicken gut microbiota in commercial production by a comparison of eggshell and feed microbiota with caecal microbiota of 7-day-old chickens, using microbiota analysis by 16S rRNA sequencing. In addition, we tested at which timepoint during prenatal or neonatal development it is possible to successfully administer probiotics. We found that eggshell microbiota was a combination of environmental and adult hen gut microbiota but was completely different from caecal microbiota of 7-day-old chicks.
View Article and Find Full Text PDFIn this review, we link ecological adaptations of different gut microbiota members with their potential for use as a new generation of probiotics. Gut microbiota members differ in their adaptations to survival in aerobic environments. Interestingly, there is an inverse relationship between aerobic survival and abundance or potential for prolonged colonization of the intestinal tract.
View Article and Find Full Text PDFBacteroidaceae are common gut microbiota members in all warm-blooded animals. However, if Bacteroidaceae are to be used as probiotics, the species selected for different hosts should reflect the natural distribution. In this study, we therefore evaluated host adaptation of bacterial species belonging to the family Bacteroidaceae.
View Article and Find Full Text PDFIn this study, we compared the caecal microbiota composition of egg-laying hens from commercial production that are kept indoors throughout their whole life with microbiota of hens kept outdoors. The microbiota of outdoor hens consisted of lower numbers of bacterial species than the microbiota of indoor hens. At the phylum level, microbiota of outdoor hens was enriched for Bacteroidetes (62.
View Article and Find Full Text PDFIn attempt to identify genes that are induced in chickens by Salmonella Enteritidis we identified a new highly inducible gene, interleukin 4 induced 1 gene (IL4I1). IL4I1 reached its peak expression (458× induction) in the cecum of newly hatched chickens 4 days post-infection and remained upregulated for an additional 10 days. IL4I1 was expressed and induced in macrophages and granulocytes, both at the mRNA and protein level.
View Article and Find Full Text PDFEpidemiological data show that the composition of gut microbiota influences host health, disease status, and even behaviour. However, to confirm these epidemiological observations in controlled experiments, pure cultures of gut anaerobes must be obtained. Since the culture of gut anaerobes is not a simple task due to the large number of bacterial species colonising the intestinal tract, in this study we inoculated 174 different culture media with caecal content from adult hens, and compared the microbiota composition in the original caecal samples and in bacterial masses growing in vitro by 16S rRNA sequencing.
View Article and Find Full Text PDFEvents occurring in the chicken caecum following Salmonella Enteritidis infection are relatively well-described. However, mechanisms of the immune response and defence beyond the intestinal tract are less well-described. In this study, we therefore determined changes in protein abundance in the liver and blood serum in response to S.
View Article and Find Full Text PDF