Hyperspectral reflectance contains valuable information about leaf functional traits, which can indicate a plant's physiological status. Therefore, using hyperspectral reflectance for high-throughput phenotyping of foliar traits could be a powerful tool for tree breeders and nursery practitioners to distinguish and select seedlings with desired adaptation potential to local environments. We evaluated the use of 2 nondestructive methods (i.
View Article and Find Full Text PDFThe relict arctic-alpine tundra provides a natural laboratory to study the potential impacts of climate change and anthropogenic disturbance on tundra vegetation. The -dominated relict tundra grasslands in the Krkonoše Mountains have experienced shifting species dynamics over the past few decades. Changes in species cover of the four competing grasses-, , , and -were successfully detected using orthophotos.
View Article and Find Full Text PDFNorway spruce has a wide natural distribution range, harboring substantial physiological and genetic variation. There are three altitudinal ecotypes described in this species. Each ecotype has been shaped by natural selection and retains morphological and physiological characteristics.
View Article and Find Full Text PDFChanges in stomatal conductance and density allow plants to acclimate to changing environmental conditions. In the present paper, the influence of atmospheric CO concentration and light intensity on stomata were investigated for two barley genotypes-Barke and Bojos, differing in their sensitivity to oxidative stress and phenolic acid profiles. A novel approach for stomatal density analysis was used-a pair of convolution neural networks were developed to automatically identify and count stomata on epidermal micrographs.
View Article and Find Full Text PDFBarley () accumulates phenolic compounds (PhCs), which play a key role in plant defense against environmental stressors as antioxidants or UV screening compounds. The influence of light and atmospheric CO concentration ([CO]) on the accumulation and localization of PhCs in barley leaves was examined for two varieties with different tolerances to oxidative stress. PhC localization was visualized in vivo using fluorescence microscopy.
View Article and Find Full Text PDFRate of photosynthesis and related plant carbohydrate status are crucial factors affecting plant vigor. Sugars providing carbon and energy sources serve also as important signaling molecules governing plant growth and development through a complex regulatory network. These facts are often neglected when mixotrophic cultivation of plants in vitro is used, where artificial exogenous sugar supply hinders studies of metabolism as well as sugar-driven developmental processes.
View Article and Find Full Text PDFThe aims of the study were: (i) to compare leaf reflectance in visible (VIS) (400-700 nm), near-infrared (NIR) (740-1140 nm) and short-wave infrared (SWIR) (2000-2400 nm) spectral ranges measured monthly by a contact probe on a single leaf and a stack of five leaves (measurement setup (MS)) of two broadleaved tree species during the vegetative season; and (ii) to test if and how selected vegetation indices differ under these two MS. In VIS, the pigment-related spectral region, the effect of MS on reflectance was negligible. The major influence of MS on reflectance was detected in NIR (up to 25%), the structure-related spectral range; and weaker effect in SWIR, the water-related spectral range.
View Article and Find Full Text PDFLaboratory spectroscopy in visible and infrared regions is an important tool for studies dealing with plant ecophysiology and early recognition of plant stress due to changing environmental conditions. Leaf optical properties are typically acquired with a spectroradiometer coupled with an integration sphere (IS) in a laboratory or with a contact probe (CP), which has the advantage of operating flexibility and the provision of repetitive in-situ reflectance measurements. Experiments comparing reflectance spectra measured with different devices and device settings are rarely reported in literature.
View Article and Find Full Text PDFCurrent knowledge of the genetic mechanisms underlying the inheritance of photosynthetic activity in forest trees is generally limited, yet it is essential both for various practical forestry purposes and for better understanding of broader evolutionary mechanisms. In this study, we investigated genetic variation underlying selected chlorophyll a fluorescence (ChlF) parameters in structured populations of Scots pine (Pinus sylvestris L.) grown on two sites under non-stress conditions.
View Article and Find Full Text PDFChloroplast number per cell is a frequently examined quantitative anatomical parameter, often estimated by counting chloroplast profiles in two-dimensional (2D) sections of mesophyll cells. However, a mesophyll cell is a three-dimensional (3D) structure and this has to be taken into account when quantifying its internal structure. We compared 2D and 3D approaches to chloroplast counting from different points of view: (i) in practical measurements of mesophyll cells of Norway spruce needles, (ii) in a 3D model of a mesophyll cell with chloroplasts, and (iii) using a theoretical analysis.
View Article and Find Full Text PDFHeavy metal contamination, low pH and high substrate heterogeneity are multiple stress factors that often occur at the post-mining sites and make difficult the biological reclamation. Efficient tools for detection of the status of reclaimed vegetation at post-mining sites are needed. We tested the potential of visible to near-infrared (VNIR) spectroscopy to detect multiple stresses in Scots pine (Pinus sylvestris L.
View Article and Find Full Text PDFEricaceae (the heath family) are widely distributed calcifuges inhabiting soils with inherently poor nutrient status. Ericaceae overcome nutrient limitation through symbiosis with ericoid mycorrhizal (ErM) fungi that mobilize nutrients complexed in recalcitrant organic matter. At present, recognized ErM fungi include a narrow taxonomic range within the Ascomycota, and the Sebacinales, basal Hymenomycetes with unclamped hyphae and imperforate parenthesomes.
View Article and Find Full Text PDFNorway spruce (Picea abies L. Karst) grown under ambient (365-377 μmol(CO(2)) mol(-1); AC) and elevated (700 μmol(CO(2)) mol(-1); EC) CO(2) concentrations within glass domes with automatically adjustable windows and on an open-air control site were studied after 8 years of treatment. The effect of EC on photosynthesis, mesophyll structure and phenolics accumulation in sun and shade needles was examined.
View Article and Find Full Text PDFDissolved organic matter in soils can be predicted from forest floor C:N ratio, which in turn is related to foliar chemistry. Little is known about the linkages between foliar constituents such as chlorophylls, lignin, and cellulose and the concentrations of water-extractable forest floor dissolved organic carbon and dissolved organic nitrogen. Lignin and cellulose are not mobile in foliage and thus may be indicative of growing conditions during prior years, while chlorophylls respond more rapidly to the current physiological status of a tree and reflect nutrient availability.
View Article and Find Full Text PDF