Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Raman micro-spectroscopy is a non-destructive and non-contact analytical technique that combines microscopy and spectroscopy, thus providing a potential for non-invasive and in situ molecular identification, even over heterogeneous and rare samples such as fossilized tissues. Recently, chemical imaging techniques have become an increasingly popular tool for characterizing trace elements, isotopic information, and organic markers in fossils. Raman spectroscopy also shows a growing potential in understanding bone microstructure, chemical composition, and mineral assemblance affected by diagenetic processes.
View Article and Find Full Text PDFIn this work, a structural analysis of the polyphenol complexes with iron and copper at several conditions is reported. The investigated polyphenols were tannic acid, gallic acid, pyrogallol, and syringic acid, being components and molecular models of the gallnuts usually employed in the past in fabrication of iron gall inks (IGIs). Commercial tannic acid extracted from gallnuts, which is a complex mixture of different gallotannins and simpler galloylglucoses, was also employed in this analysis.
View Article and Find Full Text PDFFT-Raman, FTIR, and SERS spectra of the structurally related gallnut polyphenols tannic acid, gallic acid, pyrogallol, and syringic acid are reported in this work aiming at performing a comparative assignation of the bands and finding specific marker features that can identify these compounds in complex polyphenol mixtures. Tannic and gallic acids are the principal components in oak gallnuts, and they can be found in iron gall inks. The different functional groups existing in these molecules and their spatial distribution lead to slight changes of the vibrations.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2022
Pesticide use worldwide exhibits a positive effect on agricultural production while it may negatively affect organisms living in soil, water or the air. Importantly, numerous negative health effects also occur in humans exposed to (accumulated) pesticides or their metabolites over a long period of time. To prevent both environmental catastrophes and adverse human health impacts, initial studies of the selected pesticides need to be performed together with the constant post-approval control; risk assessment analysis and on site monitoring have to be continuously carried out.
View Article and Find Full Text PDFModel systems constituted by proteins and unsaturated lipid vesicles were used to gain more insight into the effects of the propagation of an initial radical damage on protein to the lipid compartment. The latter is based on liposome technology and allows measuring the unsaturated fatty acid content as a result of free radical stress on proteins. Two kinds of sulfur-containing proteins were chosen to connect their chemical reactivity with membrane lipid transformation, serum albumins and metallothioneins.
View Article and Find Full Text PDFSubstance P (SP) is one of the most studied peptide hormones and knowing the relationship between its structure and function may have important therapeutic applications in the treatment of a variety of stress-related illnesses. In order to obtain a deeper insight into its folding, the effects of different factors, such as pH changes, the presence of Ca ions, and the substitution of the Met-NH moiety in the SP structure, was studied by Raman and infrared spectroscopies. SP has a pH-dependent structure.
View Article and Find Full Text PDFLipoproteins are very attractive natural-based transport systems suitable for applications in diagnostics and cancer therapy. Low- and high-density lipoproteins (LDL, HDL) were selected for hypericin (hyp) delivery in cancer cells. Hyp was used, as it is a well-known model for hydrophobic molecules, in order to estimate the LDL and HDL transport efficacy.
View Article and Find Full Text PDFSurface-enhanced Raman spectroscopy (SERS) of blood plasma on an electrochemically prepared silver surface has been studied as a label-free, noninvasive diagnostic test for colorectal cancer. Indium tin oxide glass substrates were modified with 0.01 mol dm - 3 silver nitrate using the pulsed double-potentiostatic method.
View Article and Find Full Text PDFThe interaction between a ruthenium - based water soluble oxygen probe ([Ru(Phen)], phen - phenanthroline) and human serum albumin (HSA) was investigated with the aim of describing the influence of HSA on the [Ru(Phen)] luminescence properties. Nowadays, several oxygen sensitive luminescent probes are used to determine the oxygen level in different compartments of living organisms. However, they can interact, depending on their hydrophilic/hydrophobic characters, with various serum proteins, and/or lipids, during their utilization for invivo oxygen measurement.
View Article and Find Full Text PDFBy means of fluorescence microscopy the intracellular distribution of fluorescent drugs with different hydrophobicity (quinizarin, emodin and hypericin) was studied. Selective photoactivation of these drugs in precisely defined position (nuclear envelope) allowed moderately hydrophobic emodin enter the nucleus. Highly hydrophobic hypericin was predominantly kept in the membranes with no fluorescence observed in the nucleus.
View Article and Find Full Text PDFSynthesis of asymmetric nanoparticles, such as gold nanorods, with tunable optical properties providing metal structures with improved SERS performance is playing a critical role in expanding the use of SERS to imaging and sensing applications. However, the synthetic methods usually require surfactants or polymers as shape-directing agents. These chemicals normally remain firmly bound to the metal after the synthesis, preventing the direct adsorption of a large number of potential analytes and often hampering the chemical functionalization of the surface unless extended, and critical for the nanoparticle stability, postremoval steps were performed.
View Article and Find Full Text PDFLuteolin (LUT) is a polyphenolic compound, found in a variety of fruits, vegetables, and seeds, which has a variety of pharmacological properties. In the present contribution, binding of LUT to human serum albumin (HSA), the most abundant carrier protein in the blood, was investigated with the aim of describing the binding mode and parameters of the interaction. The application of circular dichroism, UV-Vis absorption, fluorescence, Raman and surface-enhanced Raman scattering spectroscopy combined with molecular modeling afforded a clear picture of the association mode of LUT to HSA.
View Article and Find Full Text PDF