The complexes of G-quadruplex forming DNA thrombin binding aptamers (TBA) and polyamidoamine dendrimers (PAMAM) were studied with the aim to form a model targeted drug delivery system. Hydrodynamic diameter, zeta potential and melting temperature (T ) were investigated by dynamic light scattering and UV-VIS spectrophotometry. Non-covalent adsorption by means of electrostatic interaction between positively charged amino groups of dendrimers (+) and negatively charged phosphate groups of aptamers (-) has driven the formation of aggregates.
View Article and Find Full Text PDFOne of the major limitations for the treatment of many diseases is an inability of drugs to cross the cell membrane barrier. Different kinds of carriers are being investigated to improve drug bioavailability. Among them, lipid or polymer-based systems are of special interest due to their biocompatibility.
View Article and Find Full Text PDFMagnetic separation of microalgae using magnetite is a promising harvesting method as it is fast, reliable, low cost, energy-efficient, and environmentally friendly. In the present work, magnetic harvesting of three green algae ( and ) and one cyanobacteria () has been studied. The biomass was flushed with clean air using a 0.
View Article and Find Full Text PDFDendrons are branched synthetic polymers suitable for preparation of nanosized drug delivery systems. Their interactions with biological systems are mainly predetermined by their chemical structure, terminal groups, surface charge, and the number of branched layers (generation). Any new compound intended to be used, alone or in combination, for medical purposes in humans must be compatible with blood.
View Article and Find Full Text PDFThe unavailability of effective and safe human immunodeficiency virus (HIV) vaccines incites several approaches for development of the efficient antigen/adjuvant vaccination composite. In this study, three different dendronized gold nanoparticles (AuNPs 13-15) were investigated for a complexation ability with gp160 synthetic peptides derived from an HIV envelope. It has been shown that HIV peptides interacted with nanoparticles as evident from the changes in their secondary structures, restricted the mobility of the attached fluorescence dye, and enhanced peptide helicity confirmed by the fluorescence polarization and circular dichroism results.
View Article and Find Full Text PDFPolysiloxanes have shown exquisite properties for fabrication of microstructures for various biomedical and biotechnological applications. Nevertheless, their biocompatibility in terms of cell adhesion and survival ability is controversial. A simple polysiloxane modifying procedure that reproducibly enhances cell adhesion was proposed.
View Article and Find Full Text PDFWe studied the surface properties of monolayers composed of polyunsaturated conjugated ethylene glycol phospholipids (carotenoid lipids), compared the data with monolayers of dipalmitoylphosphatidylcholine (DPPC) to which carotenoids were added and evaluated the impact of the unsaturated glycol lipids on monolayers with the glycerolipid DPPC. The carotenoid based glycol lipids formed monolayers at the air/water interface. Using the Langmuir method we obtained series of pressure-area (π-A) isotherms and determined the limiting area A per molecule of three glycol lipids, C30:9-CA=42.
View Article and Find Full Text PDFAims: We have investigated the effect of surface charge of model lipid membranes on their interactions with dendriplexes formed by HIV-derived peptides and 2 types of positively charged carbosilane dendrimers (CBD).
Methods: Interaction of dendriplexes with lipid membranes was measured by fluorescence anisotropy, dynamic light scattering and Langmuir-Blodgett techniques. The morphology of the complexes was examined by transmission electron microscopy.
Purpose: Lipid-based nanoparticles are extensively studied for drug delivery. These nanoparticles are often surface-coated with polyethylene glycol (PEG) to improve their biodistribution. Until now, the effects of varying PEG surface density have been studied in a narrow and low range.
View Article and Find Full Text PDFThe success of gene therapy depends on efficient delivery of DNA and requires a vector. A promising non-viral vector is chitosan. We tailored chitosan to optimize it for transfection by synthesizing self-branched and trisaccharide-substituted chitosan oligomers (SBTCO), which show superior transfection efficacy compared with linear chitosan (LCO).
View Article and Find Full Text PDFOne of the major limitations in gene therapy is an inability of naked siRNA to passively diffuse through negatively charged cell membranes. Therefore, the siRNA transport into a cell requires efficient carriers. In this work we analyzed the charge-dependent interaction of the complexes of cationic carbosilane dendrimers (CBD) and anti-HIV siRNA (dendriplexes) with the model membranes - large unilamellar vesicles (LUV).
View Article and Find Full Text PDFWe studied the interaction of cytochrome c (cyt c) with specific calixarenes (CX) incorporated into the large unilamellar vesicles (LUV) composed of dimyristoylphosphatidylcholine (DMPC) or supported lipid membranes (sBLM) and compared this with not specific adsorption of cyt c to the LUV containing DMPC and anionic phosphatidic acid (PA) or sBLM composed of a mixture of DMPC and dimyristoylphosphatidic acid (DMPA). We showed that with increasing concentration of CX the average size of LUV increased and zeta potential become more negative as it is suggested from dynamic light scattering experiments. For PA containing LUV the increase in vesicle diameter was less expressed, but zeta potential decreased similarly like that of LUV contained CX.
View Article and Find Full Text PDF