A central function of the Drosophila salivary glands (SGs), historically known for their polytene chromosomes, is to produce and then release during pupariation the secretory glue used to affix a newly formed puparium to a substrate. This essential event in the life history of Drosophila is regulated by the steroid hormone ecdysone in the late-larval period. Ecdysone triggers a cascade of sequential gene activation that leads to glue secretion and initiates the developmentally-regulated programmed cell death (PCD) of the larval salivary glands, which culminates 16 h after puparium formation (APF).
View Article and Find Full Text PDFIn contrast to the well defined mechanism of merocrine exocytosis, the mechanism of apocrine secretion, which was first described over 180 years ago, remains relatively uncharacterized. We identified apocrine secretory activity in the late prepupal salivary glands of Drosophila melanogaster just prior to the execution of programmed cell death (PCD). The excellent genetic tools available in Drosophila provide an opportunity to dissect for the first time the molecular and mechanistic aspects of this process.
View Article and Find Full Text PDF