SOT101 is a superagonist fusion protein of interleukin (IL)-15 and the IL-15 receptor α (IL-15Rα) sushi+ domain, representing a promising clinical candidate for the treatment of cancer. SOT101 among other immune cells specifically stimulates natural killer (NK) cells and memory CD8 T cells with no significant expansion or activation of the regulatory T cell compartment. In this study, we showed that SOT101 induced expression of cytotoxic receptors NKp30, DNAM-1 and NKG2D on human NK cells.
View Article and Find Full Text PDFObjectives: To improve the storage stability and reusability of various yeast strains and species by immobilization in polyvinyl alcohol (PVA) hydrogel particles.
Results: Debaryomyces hansenii, Pichia sorbitophila, Saccharomyces cerevisiae, Yarrowia lipolytica, and Zygosaccharomyces rouxii were immobilized in PVA particles using LentiKats technology and stored in sterile water at 4 °C. The immobilization improved the survival of all species; however, the highest storage stability was achieved for S.
Laccases are enzymes with a broad range of biotechnological applications and have, for example, the ability to oxidize many xenobiotics including synthetic dyes. In order to obtain an efficient laccase for the decolorization of dyes which spoil wastewater from the textile industry, genes encoding three various laccase enzymes were expressed in Saccharomyces cerevisiae. The expression of laccases from ascomycete Myceliophthora thermophila (MtL), and two basidiomycetes Trametes versicolor (TvL) and Trametes trogii (TtL) was optimized via selection of plasmids, promoters, media composition, and cultivation conditions.
View Article and Find Full Text PDFLaccases are multi-copper oxidoreductases which catalyze the oxidation of a wide range of substrates during the simultaneous reduction of oxygen to water. These enzymes, originally found in fungi, plants, and other natural sources, have many industrial and biotechnological applications. They are used in the food, textile, pulp, and paper industries, as well as for bioremediation purposes.
View Article and Find Full Text PDFEnviron Microbiol Rep
June 2014
The bacterial adenylate cyclase two-hybrid (BACTH) system has been widely used to characterize protein-protein interactions in the prokaryotic world. This system relies on the interaction-mediated reconstitution of adenylate cyclase activity in Escherichia coli by bringing together two complementary fragments of the catalytic domain of the adenylate cyclase toxin of Bordetella pertussis. A limiting factor in performing large-scale two-hybrid interaction screens with full-length open reading frames (ORFs) is the need to clone each ORF individually into the plasmids used to express the hybrid proteins.
View Article and Find Full Text PDFThe aim of this work was to construct transgenic plants with increased capabilities to degrade organic pollutants, such as polychlorinated biphenyls. The environmentally important gene of bacterial dioxygenase, the bphC gene, was chosen to clone into a plant of Nicotiana tabacum. The chosen bphC gene encodes 2,3-dihydroxybiphenyl-1,2-dioxygenase, which cleaves the aromatic ring of dihydroxybiphenyl, and we cloned it in fusion with the gene for β-glucuronidase (GUS), luciferase (LUC) or with a histidine tail.
View Article and Find Full Text PDFTrends Biotechnol
November 2009
Varied therapeutic peptides and proteins represent a rapidly growing part of marketed drugs and have an undisputed place alongside other established therapies. Nevertheless, such biodrugs have several drawbacks that hinder their therapeutic application. These are undesirable physicochemical properties, such as variable solubility, low bioavailability and limited stability.
View Article and Find Full Text PDF