Background: Avian influenza A H5N1 virus can cause lethal disease in humans. The virus can trigger severe pneumonia and lead to acute respiratory distress syndrome. Data from clinical, in vitro and in vivo suggest that virus-induced cytokine dysregulation could be a contributory factor to the pathogenesis of human H5N1 disease.
View Article and Find Full Text PDFThe development of targeted anti-cancer therapies through the study of cancer genomes is intended to increase survival rates and decrease treatment-related toxicity. We treated a transposon-driven, functional genomic mouse model of medulloblastoma with 'humanized' in vivo therapy (microneurosurgical tumour resection followed by multi-fractionated, image-guided radiotherapy). Genetic events in recurrent murine medulloblastoma exhibit a very poor overlap with those in matched murine diagnostic samples (<5%).
View Article and Find Full Text PDFMedulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified.
View Article and Find Full Text PDFEpendymomas are common childhood brain tumours that occur throughout the nervous system, but are most common in the paediatric hindbrain. Current standard therapy comprises surgery and radiation, but not cytotoxic chemotherapy as it does not further increase survival. Whole-genome and whole-exome sequencing of 47 hindbrain ependymomas reveals an extremely low mutation rate, and zero significant recurrent somatic single nucleotide variants.
View Article and Find Full Text PDFVitamin D is an important regulator of the expression of antimicrobial peptides, and vitamin D deficiency is associated with respiratory infections. Regulating expression of antimicrobial peptides, such as the human cathelicidin antimicrobial peptide 18 (hCAP18)/LL-37, by vitamin D in bronchial epithelial cells requires local conversion of 25(OH)-vitamin D(3) (25D(3)) into its bioactive metabolite, 1,25(OH)(2)-vitamin D(3) (1,25D(3)), by CYP27B1. Low circulating vitamin D levels in childhood asthma are associated with more-severe exacerbations, which are often associated with infections.
View Article and Find Full Text PDFThe airway epithelium forms a barrier against infection but also produces antimicrobial peptides (AMPs) and other inflammatory mediators to activate the immune system. It has been shown that in allergic disorders, Th2 cytokines may hamper the antimicrobial activity of the epithelium. However, the presence of Th2 cytokines also affects the composition of the epithelial layer which may alter its function.
View Article and Find Full Text PDFBackground: Acetylcholine, the primary parasympathetic neurotransmitter in the airways, plays an important role in bronchoconstriction and mucus production. Recently, it has been shown that acetylcholine, by acting on muscarinic receptors, is also involved in airway inflammation and remodelling. The mechanism(s) by which muscarinic receptors regulate inflammatory responses are, however, still unknown.
View Article and Find Full Text PDFAcetylcholine is the primary parasympathetic neurotransmitter in the airways and is known to cause bronchoconstriction and mucus secretion. Recent findings suggest that acetylcholine also regulates aspects of remodelling and inflammation through its action on muscarinic receptors. In the present study, we aimed to determine the effects of muscarinic receptor stimulation on cytokine production by human airway smooth muscle cells (primary and immortalised cell lines).
View Article and Find Full Text PDFBackground: In the work of Chari et al. entitled "Effect of active smoking on the human bronchial epithelium transcriptome" the authors use SAGE to identify candidate gene expression changes in bronchial brushings from never, former, and current smokers. These gene expression changes are categorized into those that are reversible or irreversible upon smoking cessation.
View Article and Find Full Text PDFOur knowledge of the multifunctional nature of airway smooth muscle (ASM) has expanded rapidly in the last decade, but the underlying molecular mechanisms and how current therapies for obstructive airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD), affect these are still being elucidated. Our current knowledge has built on the pharmacology of human ASM contraction and relaxation established prior to that and which is reviewed in detail elsewhere in this issue. The advent of methods to isolate and culture ASM cells, especially human ASM cells, has made it possible to study how they may contribute to airway remodelling through their synthetic, proliferative, and migratory capacities.
View Article and Find Full Text PDFBackground: Chronic obstructive pulmonary disease (COPD) is characterised by an abnormal inflammatory reaction of the lungs involving activation of epithelial cells. Leptin is a pleiotropic cytokine important in the regulation of immune responses via its functional receptor Ob-Rb. This study was undertaken to test the hypothesis that severe COPD is associated with increased leptin expression in epithelial cells.
View Article and Find Full Text PDFAsthma is characterised by airway hyperresponsiveness, airway inflammation and airway remodelling. Airway smooth muscle cells are known to be the main effector cells of airway narrowing. In the present paper, studies will be discussed that have led to a novel view of the role of airway smooth muscle in the pathogenesis of asthma in which airway hyperresponsiveness, remodelling and inflammation are, at least in part, attributable to airway smooth muscle.
View Article and Find Full Text PDFBackground: Serial analysis of gene expression (SAGE) is used to obtain quantitative snapshots of the transcriptome. These profiles are count-based and are assumed to follow a Binomial or Poisson distribution. However, tag counts observed across multiple libraries (for example, one or more groups of biological replicates) have additional variance that cannot be accommodated by this assumption alone.
View Article and Find Full Text PDFDiscoverySpace is a graphical application for bioinformatics data analysis. Users can seamlessly traverse references between biological databases and draw together annotations in an intuitive tabular interface. Datasets can be compared using a suite of novel tools to aid in the identification of significant patterns.
View Article and Find Full Text PDFWe describe the details of a serial analysis of gene expression (SAGE) library construction and analysis platform that has enabled the generation of >298 high-quality SAGE libraries and >30 million SAGE tags primarily from sub-microgram amounts of total RNA purified from samples acquired by microdissection. Several RNA isolation methods were used to handle the diversity of samples processed, and various measures were applied to minimize ditag PCR carryover contamination. Modifications in the SAGE protocol resulted in improved cloning and DNA sequencing efficiencies.
View Article and Find Full Text PDFBackground: Human airway smooth muscle (HASM) cells release various chemokines that are involved in recruitment of inflammatory cells, which can be found within or in the vicinity of the airway smooth muscle layer in patients with inflammatory lung diseases. Inflammatory cells contain antimicrobial peptides including the cathelicidin LL-37 and neutrophil defensins (HNP1-3).
Objective: The aim of the study was to determine the effects of antimicrobial peptides on IL-8 (CXC chemokine ligand 8) release by HASM cells, and to study the underlying mechanisms.
The composition of the airway epithelium is dynamic and epithelial differentiation is regulated by endogenous mediators as well as inhaled substances. In atopic asthma the differentiation of the epithelium is altered. Various studies have addressed the ability of cultured airway epithelial cells to release the eosinophil-attractant chemokines eotaxin, eotaxin-2 and eotaxin-3 using epithelial cell lines or poorly differentiated primary cells.
View Article and Find Full Text PDFCryptococcus neoformans is the leading cause of fungal meningitis in humans. Production of a polysaccharide capsule is a key virulence property for the fungus and capsule synthesis is regulated by iron levels. Given that iron acquisition is an important aspect of virulence for many pathogens, we employed serial analysis of gene expression (SAGE) to examine the transcriptome under iron-limiting and iron-replete conditions.
View Article and Find Full Text PDFBackground: Human airway smooth muscle cells (HASMs) are involved in the pathogenesis of asthma. By producing chemokines, HASMs play a role in the inflammatory processes observed in this disease. Eotaxin, eotaxin-2, and eotaxin-3 are important chemoattractants for eosinophils, and these chemokines are expressed during different phases of the allergic reaction.
View Article and Find Full Text PDFGenes Chromosomes Cancer
April 2004
Cryptococcus neoformans, an encapsulated basidiomycete fungus of medical importance, is capable of crossing the blood-brain barrier and causing meningitis in both immunocompetent and immunocompromised individuals. To gain insight into the adaptation of the fungus to the host central nervous system (CNS), serial analysis of gene expression (SAGE) was used to characterize the gene expression profile of C. neoformans cells recovered from the CNS of infected rabbits.
View Article and Find Full Text PDFBackground: Biological data resources have become heterogeneous and derive from multiple sources. This introduces challenges in the management and utilization of this data in software development. Although efforts are underway to create a standard format for the transmission and storage of biological data, this objective has yet to be fully realized.
View Article and Find Full Text PDFProgrammed cell death (PCD), important in normal animal physiology and disease, can be divided into at least two morphological subtypes, including type I, or apoptosis, and type II, or autophagic cell death. While many molecules involved in apoptosis have been discovered and studied intensively during the past decade, autophagic cell death is not well characterized molecularly. Here we report the first comprehensive identification of molecules associated with autophagic cell death during normal metazoan development in vivo.
View Article and Find Full Text PDF