Publications by authors named "Zuyang Hu"

The limited cycling durability of Zn anode, attributed to the absence of a robust electrolyte-derived solid electrolyte interphase (SEI), remains the bottleneck for the practical deployment of aqueous zinc batteries. Herein, we highlight the role of local supersaturation in governing the fundamental crystallization chemistry of Zn4SO4(OH)6·xH2O (ZSH) and propose a subtle supersaturation-controlled morphology strategy to tailor the interphase chemistry of Zn anode. By judiciously creating local high-supersaturation environment with organic caprolactam to manipulate the precipitation manner of zinc sulfate hydroxide (ZSH), lattice-lattice matched heterogeneous nucleation of ZSH (001) and Zn (002) is realized in aqueous ZnSO4, producing a dense, pseudo-coincidence interface capable of functioning as decent SEI.

View Article and Find Full Text PDF

Rechargeable aqueous zinc iodine (Zn-I) batteries offer benefits such as low cost and high safety. Nevertheless, their commercial application is hindered by hydrogen evolution reaction (HER) and polyiodide shuttle, which result in a short lifespan. In this study, 1-(2-hydroxyethyl)imidazole (HEI) organic molecules featuring pyrrole-N groups are introduced as dually-functional electrolyte additives to simultaneously stabilize Zn anode and confine polyiodide through ion-dipole interactions.

View Article and Find Full Text PDF
Article Synopsis
  • * A novel approach combines a ferroelectric material (PbTiO) and a polyanionic polymer (AMPS-Zn) to stabilize zinc ion flow and reduce the anion concentration gradient, effectively addressing the SCL dilemma.
  • * Experimental results show that an asymmetric cell using this combined barrier exhibits long-lasting reversible performance, achieving up to 3450 hours of runtime and a remarkable capacity retention of 84.0% over 65,000 cycles.
View Article and Find Full Text PDF

Hydrogel electrolytes (HEs) hold great promise in tackling severe issues emerging in aqueous zinc-ion batteries, but the prevalent salting-out effect of kosmotropic salt causes low ionic conductivity and electrochemical instability. Herein, a subtle molecular bridging strategy is proposed to enhance the compatibility between PVA and ZnSO from the perspective of hydrogen-bonding microenvironment re-construction. By introducing urea containing both an H-bond acceptor and donor, the broken H-bonds between PVA and HO, initiated by the SO -driven HO polarization, could be re-united via intense intermolecular hydrogen bonds, thus leading to greatly increased carrying capacity of ZnSO.

View Article and Find Full Text PDF
Article Synopsis
  • - High-entropy materials (HEMs), such as FeMnNiVZnPS, offer enhanced energy storage performance due to features like entropy stabilization and complex interactions among multiple components, though predicting their properties remains difficult.
  • - Advanced imaging techniques (STEM-ADF and 4D-STEM) reveal unique atomic structures and strain soliton boundaries in FeMnNiVZnPS, linked to imbalanced stress from varying metal-sulfur bonds.
  • - The study shows that the unique structural and electric field characteristics of FeMnNiVZnPS lead to impressive ion-diffusion rates and high-rate performance, contributing to the development of effective designs for future high-entropy materials.
View Article and Find Full Text PDF

Although the meticulous design of functional diversity within the polymer interfacial layer holds paramount significance in mitigating the challenges associated with hydrogen evolution reactions and dendrite growth in zinc anodes, this pursuit remains a formidable task. Here, a large-scale producible zinc-enriched/water-lean polymer interfacial layer, derived from carboxymethyl chitosan (CCS), is constructed on zinc anodes by integration of electrodeposition and a targeted complexation strategy for highly reversible Zn plating/stripping chemistry. Zinc ions-induced crowding effect between CCS skeleton creates a strong hydrogen bonding environment and squeezes the moving space for water/anion counterparts, therefore greatly reducing the number of active water molecules and alleviating cathodic I attack.

View Article and Find Full Text PDF

The instability of interfacial solid-electrolyte interphase (SEI) layer of metallic sodium (Na) anode during cycles results in the rapid capacity decay of sodium metal batteries (SMBs). Herein, the concept of interfacial protection engineering of Na nanoparticles (Na-NPs) is proposed first to achieve stable, dendrite-free, and long-life SMB. Employing an ion-exchange strategy, conformal Sn-Na alloy-SEI on the interface of Na-NPs is constructed, forming Sn@Na-NPs.

View Article and Find Full Text PDF